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1. Polygons 
A polygon is a closed curve, where the border consists of straight line segments. Well known 
examples are triangles, rectangles and pentagons. The straight line segments are the sides or edges 
of the polygon, and the intersection of sides are the corners or the angles of the polygon. 
The polygon is convex if none of the angles are greater than 1800.  
 
The sum of the angles in an n-sided polygon is (n -2)∙1800 or (n -2)∙π. This is straightforward to 
verify, once you know that the sum of the angles in a triangle is 1800. That this is actually the case 
can be verified from the two figures below. 
We only have to apply three axioms (from Euclid’s elements). 
 

1. When two parallel lines are intersected by a third line, the corresponding angles of 
intersection are equal. 

2. For a given line and a given point outside the line, you may only draw one line through the 
point parallel to the given line. 

3. When two lines intersect, the opposite angles at the intersection point are equal. 
 

   
The figure shows a triangle ABC, which is redrawn, now with a line through B, parallel to AB 
(axiom 2). By applying axiom 1 and 3, we can verify that the three angles above B are equal to the 
three angles in the triangle, and their sum is 1800. 
 
Since an n-sided polygon may always be divided into an n-1 side polygon and a triangle the 
formula (n -2)∙1800 for the sum of the angles in an n-sided polygon follows. 
 
A polygon is regular if all sides are equal and all angles are equal. The angle in a regular polygon 
with n corners is therefore. 
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Which shows e.g. That the angle in a regular triangle is 0
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2 60)1(   , and the angle in a 

regular pentagon is 0
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5
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A polyhedron is a closed solid, where the surface is built by regular polygons. The simplest 
polyhedron is the tetrahedron, consisting of four regular triangles.  

2. Topologically considerations 
The famous polyhedron theorem, first discovered by Euler is most often proven in topology. 
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So we wish to map the surface of the polyhedron to a sphere, which circumvents the polyhedron. 
This will result in a closed net on the sphere, consisting of masks (m), corresponding to the 
polygons in the polyhedron, cords (s) corresponding to edges of the polygons and knots (k) 
corresponding to the corners of the polyhedra. 
 
We are interested in transforming the topological properties of the net to the same topological 
properties of the polyhedron. 
 
Topological properties are properties, that are invariant upon a continuous one-to-one mapping 
(function) (injective mapping) . Such a function is called a homeomorphism. 
 
Injectivity of a mapping f from a set A into a set B implies that to each element x in A corresponds exactly one element 
y = f(x) in B (f is a function), and that to each element y in B corresponds exactly one element x = f -1(x) in A. 
 
Two sets which are generated by each other by a homeomorphism are said to be topologically 
equivalent. A simple section of a curve is topologically equivalent to a straight line section. 
Any closed curve is topologically equivalent to a circle, and any piece of a flat section is 
topologically equivalent to a circular disc. 
Below are shown three figures of which all of them are topologically equivalent to a circle.  
  
 
 
 
 
 
 
 
 
 
On the figure below E, F and Y are topologically equivalent, while G and Z are topologically 
equivalent, and W and X are topologically equivalent. 
 
 
 
 
 

3. Euler’s polyhedron theorem 
By a net on a sphere we understand a system consisting of a finite number of flat pieces and a 
finite number of curve pieces, which are denoted masks and cords respectively, which fulfil the 
following conditions. 
 

1. Every point on the sphere belongs to at least one mask (inclusive its border), and two 
different masks do not have any internal points in common. 

2. The border of each mask is composed of cords 
3. A point lying on a cord is not an internal point, (that is, not an end point) of any other cord 

or of any mask 
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To the left is shown a net on a sphere, consisting of masks, cords and knots. 
A knot is the end point of a cord. The conditions 1 – 3, imply that on the border of each mask in a 
net there exits at least two knots, and that every knot in a net lies on the border of exactly two 
masks. 
We shall first consider a simple net consisting of only two masks, as shown on the second figure. 
The one mask is the one that you see, and the second mask is what is left over on the sphere. 
Both masks (m ) are confined by the same cords (s), and the same knots (k).  
Furthermore s = k, since each cord connects two knots, and each knot has two cords attached to it.  
Since s =k, and there are two masks, the following relation must hold for this most simple net. 
 
 (2.1)  m + k – s = 2 
 
In the next figure we have created a new mask by drawing a cord with p knots between A and B, in 
the inner of the mask. In this manner we have added p knots,1 mask and p+ 1 cords, which means 
that (2.1) is unchanged, as demonstrated below. 
 
  m +1 + k +p – (s + p + 1) = m + k – s = 2 
 
In the last figure, we have done the same, but now where the cord from A to B lies outside the 
mask, but it is easily conceived that the result (2.1) is unchanged. 
What we realize is, that whenever we add a mask to a net, subdued to the conditions 1 – 3, the 
equation (2.1) is unchanged. 
We may then create the entire net (on the figure to the left) by adding the masks shown, one by 
one. The relation (2.1) will hold for the complete net, and therefore for any net on a sphere that 
comply to the conditions 1 – 3.  
 
If a sphere encloses a polyhedron, then a central projection of the polyhedron from the centre of 
the sphere to the surface of the sphere will be a homeomorphism, which conserves the topology. 
The sides in the polyhedron, the corners of the polyhedron and the flat pieces in the polyhedron 
will correspond to the cords, knots and the masks of the net with respect to their numbers and 
topological relations. 
Consequently the same relations between sides, corners and flat pieces (polygons) of the 
polyhedron will hold true as for the cords, knot and masks of the net.  
This leads to Euler’s Polyhedron theorem. 
 
For any polyhedron, that is homeomorph with a net on a sphere, holds true that the number of flat 
pieces (polygons) (m), plus the number of corners (k), minus the number of cords(s) are equal to 2. 
 
(2.2)  m + k – s = 2 
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3. Regular nets on a sphere 
A net on a sphere is called regular if there exits two numbers λ and μ, both being at least 3, and 
such that, from each knot leaves λ cords, and the border of each mask consists of μ cords. 
We consider a regular net on a sphere, where the masks (m), knots (k) and cords (s) bear the same 
meaning as before. Since every mask is limited by μ cords , and each cord belong to two masks, 
the following must hold. 
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Which we rewrite as. 
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When inserting these expressions into Euler’s polyhedron theorem m + k – s = 2, we get: 
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 s
ss
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And by division by 2s: 
 

(3.1)  
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Leading to the inequality: 
 

  
2
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
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From which follows that both numbers λ and μ cannot be greater than 3, as 2
1

4
1

4
1   

Furthermore it follows, that none of the numbers λ and μ can be greater than 5, since they are at 
least 3 and:  

2

1

3

1

6

111



 

 
A polyhedron is regular, if it consists of congruent regular polygons, so that all angles and all 
sides in the polygon are equal. For a regular polyhedron, one can easily convince oneself that there 
are only 5 possibilities for a regular polyhedron, shown below in the table (3.2)   
   

λ μ s m k polyhedron 
3 3 6 4 4 Tetrahedron 
3 4 12 6 8 Cube 
3 5 30 12 20 Dodecahedron 
4 3 12 8 6 Octahedron 
5 3 30 20 12 Icosahedron 
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4. The dihedral angle in a regular pyramid 
Aiming at calculating the dihedral angle, that is, the angle between two adjacent polygons which 
form the regular polyhedron, we shall first find the dihedral angle in a regular pyramid. 
Concerning the tetrahedron, cube and octahedron this can be done using plane geometry, but for 
the dodecahedron and the icosahedron, it is not possible, since I have found no reference to the 
issue in the mathematical literature. 
 
I have however found a reference to the subject in a mathematical textbook used for the 3. year of 
the Danish 9 – 12 grade high school (gymnasium), but it involves spherical geometry in a fairly 
advanced level 1 . 
The trick is to intersect a corner at the base of a pyramid by a sphere, having its centre at a corner 
of the base of the pyramid. The point of doing this is of course that any corner of a polyhedron can 
be cut of to form a regular pyramid. 
In the two drawings below is shown a corner of a regular pyramid, having n-corner surfaces and n-
edges. The top angle in the pyramid is denoted v and the dihedral angle is φ.  
As the corner surfaces are isosceles, the angle between a side in the corner surface and a side in the 
base is vv 2

1
2
1

2
1 )(   .  

From the corner O is drawn a sphere that intersects the pyramid in the two corner surfaces as well 
as in the base. So the sphere intersects the pyramid in the two great circle arcs  AC and BC, and it 
intersects the base in the great circle arc AB, which according to (1.1) is equal to AB =  n

 2 . 

 
  

 
 
 
 
 
 
The arcs AC = BC = v2

1
2
1   are the angles in the isosceles triangle, which has the top angle v. 

The arcs AC, BC, AB form a spherical triangle with AC = v2
1

2
1  , BC = v2

1
2
1  , AB = n

 2 , 

and where C  = φ is the dihedral angle of the pyramid. 
The dihedral angle can then be found from the spherical triangle ABC, where we first write the 
cosine-relation in the familiar form, using the sides a, b, c, corresponding to the angles A, B, C. 
 
  Cbabac cossinsincoscoscos   
 
  cossinsincoscoscos ACBCACBCAB  
 
    cos)sin()sin()cos()cos()cos( 2222

2 vvvvn  
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1 www.olewitthansen.dk Spherical Geometry 

 



 The Platonic solids.  
 The five regular polyhedra 6 

From the formula: 
2

cos1
2
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 

 ,  derived from xx 2sin212cos  , we get when inserting 

the expression for cos φ. 
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Where we have applied the relation:  1sincos 22  xx , and the formula: 
 

xxxx 22 cos22cos11cos22cos    
 
In the numerator of the square root. Thus we find: 
 

(4.1)  
)

2
cos(

)cos(

2
sin

v
n


   

5. Evaluation of the dihedral angles and the radii in the inscribed and 
circumscribed spheres of the five regular polyhedra 
The dihedral angle is the angle between two adjacent polygons. 
If one cuts a corner of a polyhedron along the edges of the corner one has a regular pyramid, 
where the top angle is the angle in the regular polygons, that constitute the polyhedron, and where 
the sides in the base in the pyramid can be found from the regular polygon, and where the pyramid 
has the same dihedral angle as the regular polyhedron! 
This is illustrated below for a dodecahedron and a icosahedron. 
 
 
  
 
 
    
 
 
 
 
 
 
We start out from (4.1)  

)
2

cos(

)cos(

2
sin

v
n


    

n the number of sides in the pyramid, being same as the number of edges from a corner of a 
regular polyhedron, and as we in section 3 denoted by λ. The number of corners in the polygons 
that constitutes the polyhedron we have previously denoted μ. 
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In the formula (4.1) ½v is half the top angle in the pyramid, being the same as the angle in the 

regular polygon that constitutes the polyhedron According to (1.1)  
n

v
 2

 .  

With these notations, we find for the half of the dihedral angle: 

(5.1) 
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  => 
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)cos(

2
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




   

The values for λ and μ are given in table (3.2), which we for convenience repeat below. 
   

λ μ s m k polyhedron 
3 3 6 4 4 Tetrahedron 
3 4 12 6 8 Cube 
3 5 30 12 20 Dodecahedron 
4 3 12 8 6 Octahedron 
5 3 30 20 12 Icosahedron 

5.1 The Tetrahedron 
According to the table above )3,3(),(  , and we find for the dihedral angle. 
 

(5.2)  

0

0

3

3
2

54,70

27,35
23

3

2

3
2

1

)sin(

)cos(
sin





ntetrahedro







 

 
The dihedron and the radii for the inscribed and circumscribed spheres may relatively easy be 
calculated using plane trigonometry. Below is shown a tetrahedron, where some lines have been 
drawn to that purpose. To the right, the triangle ABC has been extracted, which is used to calculate 
the radii of the inscribed and circumscribed spheres. 
 
 
 
 
 
 
 
 
 
 
 
 
 
For symmetry reasons the heights in a regular triangle are also the medians of the triangle.  
If you draw the height from a corner, then the bottom point will lie in the intersection point of the 
heights in the base triangle.  
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The centres for the inscribed and circumscribed spheres, will lie in the common intersection of the 
three heights from the corners. For simplicity we shall put the length of the side in the polyhedra 
equal to 1. 

The height in the regular triangles can be found from Pythagoras:  
2

3
)(1 2

2
12  FBh  

From ΔABF we find the dihedral angle, by drawing the height from B to the opposite edge at G. 
 

(5.3) 27.35
23

3

2
sin 0

2
3

2
1




AB

AG
 054.70ntetrahedro  

 
To determine the radii r and R of the inscribed and circumscribed spheres, we apply the two one 
angled triangles ABC and AOD. 

Here 
2

3
 hAB  and since the intersection point of the medians divides the median in the 

fraction 1:2 then:  
3

3

2

3
3
2

3
2  ABAD .   

Furthermore:   3
2

9
6

9
322

2
3

3
2222 1)(1  FCAFAC  

 
From the two one angled triangles ABC and AOD, we thus find, since 1:2: rR . 
 

(5.4)  
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6
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Rr

R
R

AC

AD

AB
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The last equation because O divides AC in the same proportion as D divides AB. 

5.1.1 Surface and the volume of the tetrahedron 
The plane surface and the volume of the tetrahedron, can rather easily be determined, but this time 
we put the length of the edge to a. 

The area of the regular triangle is 2
2
1

4

3
aahT  , and the surface of the 4 triangles is therefore: 

 
23aO ntetrahedro     

 
The volume of a pyramid is as it is well known 1/3 height of the pyramid times the area of the 

base.  We have the height aAC 3
2 , and the volume becomes: 

 

  32
3
2

3
1

12

2

4

3
aaaV ntetrahedro   
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5.2 The Cube  
The dihedral angle of the cube is 900, which also can be calculated from the formula (5.1)  
 

)cos(

)cos(

2
sin






        with    )4,3(),(  .    

(5.5) 00

2
2

2
1

4

3
2 9045

22

2

2

1

)sin(

)cos(
sin  cube




  

 
We put the length of the side in the polygons to 1. 
In this case it is very easy to determine the radii r and R of the inscribed and circumscribed 
spheres, since their centre is the centre of symmetry, so the radius of the inscribed sphere is 
. 

 (5.6)  2
1r  

 
The radius of the circumscribed sphere is simply half the 

diagonal BE. The diagonal of the square is: 211 22 BH , 

and therefore: 312 2222  EHBHBE , so  

(5.7)  
2

3
2
1  BER  

The surface and volume of the cube are of course: 
 
  OCube = 6a2   and    VCube = a3 

5.3 The Octahedron 
On the figure to the left is shown an octahedron. 
We wish to determine the dihedral angle φ and the radii r 
and R of the inscribed and circumscribed spheres. 
In the figure to the left, we have drawn the height h3 from 
E on BC in the regular triangle BCE, and we have drawn 
the height h from E on ABCD. 
The centre O the inscribed and circumscribed spheres, lies 
for symmetry reasons in the centre of the square ABCD. 
We find the half dihedral angle as the angle OFE.  

      
2

3
)(1 2

2
12 EF       and     

2

1
OF  

Thus we find: 
 

(5.8) 48,1091sin
3

3
cos 0

3
2

9
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2
1

2
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2
1

2
1  

EF

OF
 

This may be compared with the formula  (5.1)   
)sin(

)cos(
sin 2






    med )3,4(),(  . 
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48,109
)sin(

)cos(
sin 0

2
3

2
2

3

4
2  




  

Radius in circumscribed sphere is simply half the diagonal of the square ABCD. 

(5.9)   
2

2
11 22

2
1 R   

Radius r in the inscribed sphere can be determined from the triangle OFG, where r = OG, since 
the point of contact with the sides must be placed in the intersection point of the medians (and the 

heights) of the regular triangle. We therefore have: 2
3

3
1

3
1  EFFG .   

We then get from the right angle triangle OFG: 
 

(5.10)  6
12

6
32

2
1 )()( r   

5.3.1 Surface and the volume of the octahedron 
The surface of the octahedron is simply 8 times the area of a regular triangle and the volume of the 
octahedron is 2 times the volume of a regular 4-sided pyramid with base area a2. The height of the 
pyramid equals the radius in the circumscribed sphere. 

 Ooctahedron 
22 32

4

3
8 aa       and      Voctahedron = 33

3

2

2

2

3

2
aa   

5.4 The Dodecahedron 
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As remarked earlier, there is probablyno way to find the dihedral angle, and consequently the radii 
in the inscribed and circumscribed spheres from elementary trigonometry. We therefore resort to 
formula (5.1). 

)sin(

)cos(

2
sin






    with )5,3(),(     

(5.11)  60,116
)

5
sin(

)
3

cos(

2
sin 0 vv




. 

To determine radii in the inscribed and circumscribed spheres, we need to know the distance r5 

from the centre of the inscribed and circumscribed circle of the regular pentagon to the side, and 
the distance R5 from this centre to a corner of the pentagon.  
As previously, we put the side of the pentagon to 1.  

The angle of the pentagon is 0108
5

180)25(



, and half the angle is therefore 540.  

The centre angle to a side is therefore 720, and its half is 360.  From the drawing of the pentagon at 
the top to the right is seen:  
 

)85.0(
36sin2

1

36sin
2
1

5 R  og   )69.0(54tan2
1

5 r  

 
Radius in the inscribed sphere is determined by the 3. figure above to the left, which shows a 
section of the dodecahedron, with two pentagons intersecting with the dihedral angle. We have 
drawn the two perpendiculars from the centre O for the sphere on the two pentagons having the 
common edge DE. The angle ACB is equal to the dihedral angle v of the dodecahedron and the 
angle O is O =180 – v. 
 
The angle AOC is therefore 90 - ½v. The radius r = OA=OB, and from the triangle AOC is seen  
 
(5.12) )12.130,58tan69.0(tan)90tan( 2

1
52

1
5  vrrvrr  

 
From the triangle ADO , shown at the figure to the right, we find: 
  

(5.13)  )32.1(22
5

2  rrR  

5.4.1 Surface and the volume of the dodecahedron 
The plane surface of the dodecahedron can be determined as 12 times the area of an regular 
pentagon which is 5 times a triangular section with the side a: 54tan5 2

4
5

2
1

52
1 aaarTpentagon   

 
  Ododecahedron 

254tan15 a   
 
In the same manner, the volume determined as 12 times the volume of a regular pentagon pyramid 
with a height equal to the radius of the inscribed sphere. 
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 32
4
5

3
1 54tan554tan12 araarV ondodecahedr    

 

5.5 The Icosahedron 
 
 
 
 
 
 
 
  
 
 
 
As it is the case with the dodecahedron, it is not possible to determine the dihedral angle of the 
icosahedron from pure geometry. We therefore use the formula (5.1). 
 

)sin(

)cos(
sin 2






    med )3,5(),(  .      

 (5.14)   20.138
60sin

36cos

)sin(

)cos(
sin 0

3

5
2  vv





. 

Concerning the radii of the inscribed and circumscribed spheres, we shall apply the same method 
as we did for the dodecahedron .  

r3 = AC is the radius of the inscribed circle in the regular triangle. r3 = 6
3

2
3

3
1

33
1 h . 

3R  AD is the radius in the circumscribed circle in the regular triangle. 3R  3
3

2
3

3
2

33
2 h  

From the triangle OAC is seen: 

(5.15)   )81.0(
cos

)90sin(
2

3
23 

v
v r

rrr  

And from the triangle OAD is seen: 
 

(5.16)  88.0)( 22
33

2  rhOAR  

5.5.1 Surface and the volume of the icosahedron 
The plane surface and the volume of the icosahedron are determined in the same manner as for the 
dodecahedron, as 20 times the area of the regular triangle, and 20 times the volume of a 3 sided 
pyramid with the height equal to the radius of the inscribed sphere. 
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This ends our treatment of the five regular polyhedra. 


