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1. Rutherford’s model of the atom 
Although the chemists with success had used the atomic hypothesis of Dalton for half a century, 
no one had until 1900 acquired a clear picture of the structure of the atoms. 
The Englishman J.J. Thomson had discovered the electron and he had determined its mass and its 
charge. With the knowledge of the positive ions, it was a general assumption that the atoms were 
composed of positive and negative charge.  
Thomson imagined an atom model, (which later has acquired the unjust name “The plum-pudding 
model”), where the positive charge filled the whole volume of the atom, whereas the electrons sat 
as raisins in a pudding of positive charge.  
 
However, as it has often been the case in the history of physics, it is not rambling philosophical 
considerations that make a breakthrough, but rather a well designed experiment. 
The groundbreaking experiment was designed and executed by Rutherford in 1910. 
 
Since it is impossible to view the atoms directly Rutherford designed and executed an experiment, 
where he bombarded the atoms in a hyper thin gold foil with alpha-particles.  
The fast alpha particles were one of the three constituents of radioactive radiation which had been 
detected and investigated by Becquerel and Curie in the late 1900 century.  
The Curies had performed experiments, deflecting alpha particles in electric and magnetic fields, 
and they had found that the alpha particles carried two positive elementary charges and had a mass 
about 4 times of the mass of the hydrogen atom. Since the alpha particles are very quickly slowed 
down in atmospheric air Rutherford’s experiments had to be performed in vacuum. 
 
To register how the alpha particles were scattered after passing the Au-foil, (and using classical 
mechanics), Rutherford hoped to get more insight in the structure of the atom. 
Below is schematically shown the setup for Rutherford’s experiment. 
 
 
 
 
 
 
 
 
 
The alpha source is placed in a lead block, having a narrow pipe to secure a collimated stream of 
alpha particles. (Alpha particles are completely absorbed in less than one mm Pb.) 
 
To observe the scattered alpha particles, Rutherford used a fluorescent screen e.g. a Zns screen, 
which gives a tiny flash of light, when hit by a charged particle. These tiny light flashes could only 
be registered using a microscope, and only after the sensitivity of the retina of the observer had 
been strengthened by a stay in complete dark for several hours.   
 
In the first of many experiments, Rutherford found that the major part of the alpha-particles passed 
through the gold foil without deflection.  
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This observation was in some agreement with a “soft” atomic model, in which the positive charge 
of the atom is smeared out over its entire volume. 
 
Almost by accident, because he had turned the microscope about 900, he observed that a few alpha 
particles had a deflection of larger angles, 30 degrees or more. 
 
This observation was, however, in absolute contradiction to the conception of a “soft” atom model, 
since the “soft” atom model, being bombarded with alpha particles, could be compared to firing 
rifle bullets into a block of wax or another soft material. 
 
The electric repulsive force which is required to give an alpha particle a large deflection angle, 
must necessarily be very large, and since the electrical repulsion is inversely proportional to the 
square of the distance between the alpha particle and the atom, then the positive charge in the atom 
had to be located in a very small region. 
  
From the results of the experiments Rutherford thus concluded that the positive charge, and 
thereby its mass of the atom had to concentrated in an extremely tiny region compared to the size 
of the atom.  
 
Rutherford therefore made the conjecture which afterwards appears obvious, (once you hear it for 
the first time) that analogous to the planetary system, where the much smaller planets orbit around 
the massive sun, the small electrons orbit around the massive nucleus of the atom. 
 
The tremendous difference between the planetary system and the atom is of course the size of the 
forces involved. 
The gravitational constant has the value G =6.67 10-11 (SI-units) , whereas the corresponding 
constant in Coulombs law has the value 9 109 (SI-units). The ratio between these two constants 
more or less also reflects the ratio between the size of the planetary system and the size of atoms. 
Below is schematically shown how one may picture the structure of the atom, together with the 
scattering of alpha particles from an Au nucleus. 
 
 
   
 
 
 
 
 
 
 
 
Although remarkably simple (when you think of it), Rutherford’s model of the atom was a radical 
breakthrough. For the first time it was conceived that the atom had a structure consisting of a 
positive nucleus with orbiting electrons. Furthermore the stability of the atom could be explained 
(but not quite) by the already well known Coulombs law.  
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Since Coulombs law and the law of gravitation are mathematically identical the orbits of the 
electrons will be elliptically.  On the other hand the alpha particles which are not bound to the 
atomic nucleus will perform hyperbolic trajectories. 
 
Building on his atomic model, based on Coulombs law, Rutherford could make theoretical 
calculations of the so called cross sections (the fraction of the scattered particles that hits an area 
on a sphere having the target as its centre). His derivation of the deflection angle of the alpha 
particles will, however, be deferred to the section on nuclear physics.  
 
Since the experimental results came out in perfect agreement with theory is was a tremendous 
success for Rutherford’s model. 
 
Based on the agreement of theory with experiment Rutherford concluded that the alpha particles 
had not reached the nucleus, since otherwise (unknown) non electrical forces between the alpha 
particles and the nucleus would play a role.  

On these premises Rutherford was able to calculate an upper 
limit for the size of the nucleus, for example by observing 
alpha particles from a central impact where the deflection 
angle is 1800.  
To determine the upper limit for the radius of the nucleus, we 
apply the conservation of energy theorem expressing that the 
kinetic energy the alpha particle far from the nucleus is equal 
to its potential energy at its closest position to the nucleus, 

where the alpha particle is at rest.  The kinetic energy of the alpha particle is: Ekin =
2

2
1 mv . 

When the alpha particle turns around, it has the distance rmin to the nucleus, and it has only 
potential energy. (We assume that the nucleus is that much heavier than the alpha particle, so that 
the nucleus is at rest during the impact). 
The potential energy of two particles with charges 2e (alpha particle) and Ze (Au nucleus) is:  
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Energy conservation then gives: 
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If we insert 2

2
1 mv = 4.78 MeV, which was the energy of the alpha particles used by Rutherford, we 

may solve (5.5) for rmin to give 4.76 10-14 m.  
The unit of length 10-15 m is called 1 Fermi (1 fm). The size of the nucleus is between roughly 1 fm 
to 11 fm. The size of an atom is about 10-10 m.  
 
This means that if we enlarge the nucleus to a needle head (1 mm), the outer electrons be found in 
a distance of 10 meters. (So most of the atom consists of vacuum). 
 
At first sight it appeared that Rutherford’s atom model might also account for the emission of light 
from the atoms.  
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If an electron orbits the nucleus, then according to the classical theory, there will be emitted 
electromagnetic radiation. From the Maxwell equations it follows that accelerated charged 
particles emits electromagnetic radiation.  
If a charged particle performs a periodic motion with frequency ν, then the frequency of the 
radiation is also ν.  If a charged particle performs a uniform circular motion with frequency ν, then 
the emitted light will have the same frequency. 
 
1.3 Example: An estimate of the wavelength for light emitted from a Na-atom. 
Experimentally the light from the Na atom is yellow having a wavelength 689 nm.  
We approximate the size of the Na atom by the radius in the outmost electron orbit, but the radius can also be 
estimated from the density of Na, and the mass of one mole Na.  
 
MNa = 23 g/mole, and the density is: ρ = 0.97 g/cm3. If NA is Avogadro’s number one Na atom has the mass:  

A

Na

N

M
m  . From the formula: 

V

m
 , we may then calculate the volume V of a Na atom, and finally we can find 

the radius of the atom from the formula for the volume sphere of a sphere: 3
3
4 rV   
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Inserting the numerical values, we find:  r = 2.1 10-8

 cm =2.1 10-10 m. 
 
When calculating the frequency in the circular motion, we put the Coulomb force Fe  equal to the centripetal force Fc.  
It will, however not be realistic to put the charge of the nucleus equal to Ze, since the nucleus is shielded from the 
inner electrons. We then make the assumption that the shielding from the inner electrons is complete, so that the 
electron is only affected by one elementary positive charge. From this we get: 
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Inserting the numerical values, we find: 2  6.92 1029 Hz2 which gives the frequency ν = 8.32 1014 Hz. 

To determine the wavelength we use: 


 c
 , and it results in a wavelength nm361 .  

So we get a wavelength of the right magnitude, but although we have made some crude approximations and 
simplifications, this theory will never come close to predict the correct value of 632 nm.  
Although Rutherford’s model explains the structure and stability of the atom, as an atomic planetary system, it is 
neither able to predict the frequency of the emitted light nor to explain the line spectra of atoms. 

2. The atomic model of Bohr involving the quantum hypothesis 
Right from the beginning, Rutherford’s atomic model was a success, both for its simplicity, and 
for its foundation on first principles from mechanics and electricity. (The atom is an orbiting 
system, held together by Coulombs law). It served also as an explanation for well known 
phenomena as the creation of ions, which had been a part of chemistry for a long time already.  
A positive ion was merely an atom, which had lost one or two of its outer electrons, and a negative 
ion was an atom which had attracted and bound one or two extra electrons.  
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Also the emission of light could be accounted for, since the 
orbiting electrons (as a consequence of Maxwell’s equations), 
would radiate light with the same frequency as the frequency in 
the orbit of the electron. 
But precisely the explanation of the emission of light from the 
atoms turned out to be the greatest weakness of the model, since 
it is a consequence of the Maxwell equations that accelerated 
charged particles emit electromagnetic radiation.  
But that means that the electrons orbiting around the nucleus 
should continuously radiate light.  

Furthermore the radiating electrons would loose energy and begin spiralling towards the nucleus, 
and in less than a millisecond they would sit on the top of the nucleus. Illustrated in figure (6.1) 
But that we know, has nothing to do with the physical realities. The atoms do not emit light unless 
they acquire energy from the outside in the form of light or otherwise, and Rutherford’s 
experiment had convincingly demonstrated that the electrons had an orbiting motion far from the 
nucleus. 
 
Furthermore Rutherford’s model failed completely in predicting the characteristic line spectra of 
the atoms. Even the existence of the line spectra could the model not account for. 
 
It was the Danish physicist Niels Bohr who elaborated on and revised Rutherford’s model, so it 
was brought in accordance with the experience. 
 
Bohr combined Rutherford’s atom model with the quantum hypothesis of Planck, since he realized 
that the line spectra of the atoms corresponded to the energy of the photons. A plausible 
conjecture, since a photon with a specific energy always has the same frequency: hEphoton  . 

The discrete values of the frequency of the photons were reproduced in the spectral lines. 
 
Bohr proposed in 1913 his two famous postulates. They were called postulates, because their 
content could not be derived from any known theory, but merely was an ingenious interpretation 
of the available experimental data. 
 
1. postulate: 
The atom can only exist in a numerable number of so called stationary states. In the stationary 
states the atoms do not emit light. The stationary states may be viewed as selected orbits that the 
electrons can have.  An electron which is bound to the atom is always located in one of these 
orbits. 
 
2. Postulate:  
By a transition from one stationary state having energy E1 to a stationary state having energy E2, 
the atom emits a photon given by the frequency condition: 
 
(2.1)  21 EEh   
 
In the same manner the atom can be exited from the state E4 to the state E3 by absorbing a photon 
with the energy hE  .The frequency condition remain the same: This transition may be viewed 
as if the photon supplies energy to lift an electron from one orbit to another. 
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(2.2)  43 EEh   

 
We shall only look at the Hydrogen atom, being the simplest atom with only one orbiting electron.  

In figure (6.1) we have schematically illustrated the 
transitions to the three lowest energy levels in the hydrogen 
atom.  
The light, which is emitted from transitions to these three 
levels are named after their inventors.  
Transitions to E1: The Lyman series, (invisible, because it is 
in the UV- area).  
Transitions to E2: The Balmer series is visible (and first 
discovered). 
Transitions to E3: Paschen series. (invisible, because it is in 
the infrared region). 

In an effort to determine the systematic of the wavelengths of the visible lines in the hydrogen 
spectrum, Balmer had invented a formula on empirical grounds, shown below. 
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,     where n = 3,4,5,….. 

 
It required, however, a strike of genius that Bohr realized the connection between his two 
postulates and the empirical Balmer formula. The line of thought is, however, remarkably simple. 

From the formula: c , the energy of a photon can be written as: 


 c
hh  . 

If we then multiply the Balmer formula with hc, then the left hand side will represent the energy of 
a photon. According to the second postulate this should be equal to the difference between the 
energies in two stationary states. By a minor rewriting in (6.2), we are able to give a conjecture for 
the expression of the energy levels in the hydrogen atom. 
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The last parenthesis is the conjecture. From Bohr’s postulate the energy of the photon should be 
written as the difference between two energy levels, and using Balmer’s formula it is written as a 
difference between two quantities, which have the units of energy. It is therefore obvious to make 
the following identification of the nth energy level: 
 

(2.5)  2n

hcR
E H

n  ,    where n = 1,2,3, ,…. 

 
That the energy is negative is what to be expected, since the electron is bound to the nucleus. 
The energy of the electron also becomes negative in the classical derivation using Coulombs law. 
  
The negative energy is the so called binding energy, that is, the energy required to pull the electron 
out of the atom. Far away from the atom the relative energy of the electron and the nucleus is zero. 
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Using Bohr’s interpretation, the wavelengths that appear in the Balmer formula correspond to 
photons emitted in a transition from the nth energy level to the second energy level in the 
hydrogen atom. 
 
Before 1926 with the appearance of the Schrödinger equation, it was not possible to give a 
theoretical derivation from first principles that could predict the energy levels in the hydrogen 
atom. 
  
First we shall make a classical derivation of the energy of the hydrogen atom, next we shall show 
how Bohr succeeded, (by holding together the classical expression for the energy with the Balmer 
formula), to express the Rydberg constant RH by known constants of nature, and thus give a 
theoretical expression for the energy levels of the hydrogen atom. 

3. Classical derivation of the energy of the hydrogen atom 
We shall limit ourselves to look at the hydrogen atom, which has a nucleus with one positive 
elementary charge e, and an orbiting electron with charge –e. 
We shall assume that the electron performs a uniform circular motion with radius r, and that the 
nucleus is that heavy compared to the electron that it can be considered as being at rest. 
The classical expression for the energy of the electron can then be calculated as follows: 
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The mass of the electron is m and v is its velocity. Ekin can then be expressed by the radius in the 
circular motion, if we put the centripetal force Fc equal to the Coulomb force Fe.  
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We notice that |E| = Ekin , but apparently the expression (7.3) has very little resemblance with (6.3), 
which Bohr deduced from the Balmer formula. We can only observe that both expressions are 
negative and they both go to zero in the limits:  nandr .  
We also notice that the classical expression for the energy of the atom is a continuous function of r 
having its maximum zero. 
  
The expression for the energy levels derived by Bohr, however, consists of infinity of discrete 
values. For large n, however, the levels are very close to each other and in the limit n the 
energy levels almost lie continuously.  
 
This observation was exploited by Bohr to establish his “principle of correspondence”.  
Since the classical theory is valid on the macroscopic scale and the quantum mechanic description 
of nature is valid on the atomic scale, there had to be a limit, where both descriptions could 
account for the physics of particles, that is, there had to be a correspondence (a bridge) between 
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the classical and the quantum mechanical description. Although this seems logical enough, it was 
certainly more intriguing to carry the idea out in a theoretical framework. 
 
However, Bohr succeeded administrating great cunning, and using the principle of correspondence 
to make a calculation of the Rydberg constant, and thereby obtain a purely theoretical expression 
for the energy levels in the hydrogen atom. 

4. The energy levels in the hydrogen atom according to Bohr. 
According to Rutherford’s model of the atom, the emitted radiation should have the same 
frequency as the frequency of the electrons in their motion around the nucleus. 
If the electron performs a uniform circular motion, we shall express this frequency by the energy. 
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In the last expression we have applied that |E| = Ekin as mentioned in (7.3). Using (7.3) we may 
also express the electrons radius by the energy, obtaining an expression for the frequency solely by 
the energy. 
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Since the motion of the electrons is not necessarily a uniform circular motion, but just a periodic 
motion with period ν, it is a consequence of the Maxwell equations that the light can also be 
emitted  with frequencies 2ν, 3ν, 4ν,…the so called overtones. This is equivalent to the modes of a 
suspended string performing periodic oscillations.  
With this amendment, we obtain from classical mechanics the frequencies for light emitted from 
the hydrogen atom. 
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Bohr believed that the Balmer formula was actually the correct theoretical formula for the 
wavelength of the light emitted from the hydrogen atom and not just an interpolation formula. 
Otherwise a comparison with the classical theory would also have been meaningless. 
We have already seen how Bohr managed to find the energy levels of the hydrogen atom from the 
Balmer formula. 

(4.4)  2n
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E H

n  ,    where n = 1,2,3,… 

At the transition from the nth to the mth stationary state, there is emitted a photon with a frequency 
given by the frequency condition according to Bohr’s 2. postulate. 
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The purpose of Bohr’s idea, the correspondence principle, was that there existed a limit (the 
correspondence (bridge) to the classical physics), where both descriptions could be applied 
although the formulas looked quite different.  
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Bohr assumed that the limit should be sought for very large values of m and n, since the energy 
levels in the Balmer formula lie very close in this limit. 
We therefore consider a transition from the n+p ’th to the nth level, where n is a very large 
number, and p << n . 
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To obtain the last expression, we have neglected p2 compared to n2 in the numerator, and replaced 
the denominator by n4. We then obtain the following expression for the frequencies.  
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From (8.4) we may then express n by the energy |E| , and we just write E instead of En.  
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Inserting this result in (8.7), we can express the frequency of the emitted light solely by the energy 
of the electron, Rydberg’s constant and other known constants of nature. 
 

(4.8) 3,2,1
||2

||

2 3

3 









 pwherep

hcR

E

h
p

E

hcR

cR

H
H

H ,…. 

 
By a comparison between the formula (8.3) (the classical calculation) and (8.8) the quantum 
physical calculation, we then realize that the two expressions are equal if: 
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This equation obtained by means of the correspondence principle allows us to give an expression 
for the Rydberg constant by means of already known constants of nature. 
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The value of RH calculated from the formula above turned out to be in excellent agreement with 
the earlier experimental determination. 
For the first time someone had succeeded in obtaining a formula for the energy of the stationary 
states in the hydrogen atom on a purely theoretical basis. 
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5. The hydrogen spectrum 
According to Bohr, the energy levels of the hydrogen atom are given by: 
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Evaluating the constant, we find the numerical values for the energy levels. 
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Above is a schematic illustration of the energy levels in hydrogen. The spectral lines for the 
transitions to the level E2 is the Balmer series.  
 
The wavelength for the first line in the Balmer series may be calculated from the formula: 
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In a similar manner one may evaluate the wavelengths of the other spectral lines in the Balmer 
series. 
The spectral lines coming from transitions to the ground state E1 = -13.6 eV are all outside the 
visible area. For example we can evaluate E2 – E1 =13.6 eV – 3.4 eV, which gives a wavelength of 
122 nm deep into the ultraviolet region. 
The spectral lines which correspond to transitions to the ground level are called the Lymann series. 
The spectral lines, corresponding to the transitions to the energy level E3 = -1.51 eV all belong to  
the infrared part of the spectrum. Together they are called the Paschen series. 
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Bohr’s theory accounts for the major part of the physics of the hydrogen atom, but the theory was 
still incomplete, since the theory can neither explain why the transitions take place at all, nor for 
how long an atom is in an excited state before it decays to the ground state.  
Experimentally it is also found that some transitions are far more frequent than others. This is 
reflected in the variation of the strength of the spectral lines. 

6. The quantization of the angular momentum 
The application of the correspondence principle to investigate the physics of the atoms is very 
demanding in respect to ingenuity.  
However, Bohr succeeded to obtain the correct result for the energy levels in the hydrogen atom in 
a more direct way, by assuming the angular momentum of the electron was also quantized.  

 
We remind you that the angular momentum for a particle 
is defined as: 

(6.1)  prL
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  
Where r


is the position vector of the particle and p


is the 

momentum of the particle. 
If especially the particle performs a uniform circular 
motion, where we have that: pr


 , we find  L = rp= 

mrv. 
If we let L = mrv designate the angular momentum of 

the electron in its motion around the nucleus, Bohr postulated that the angular momentum is 
quantized, and it can only have the values: 
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 is a standard designation for Planck’s constant divided by 2 pi. 
We shall then proceed to calculate the energy levels in the hydrogen atom using the assumption 
(10.2). We will apply the expression (7.2) for the kinetic energy of the electron, when it performs a 
uniform circular motion. From the equations: 
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We may solve for r, by eliminating v. 
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We see that the quantization of the angular momentum implies that the electron can only be found 
in some selected orbits, having the radii (10.3). If n = 1 is inserted we find a value for the radius, 
which normally are designated the Bohr radius. 
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If we then insert (10.3) in the classical expression for the energy of the electron, we also find that 
energy levels are separated. 
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We notice that (10.5) is identical to (9.1) derived on the basis of the correspondence principle. 
This confirms that the assumption of the quantization of the angular momentum is correct. 

7. The Schrödinger equation 
The Schrödinger equation was proposed in 1925 by the Austrian physicist Kurt Erwin Schrödinger 
and it is the foundation of classical quantum physics in the same manner as Newton’s laws are the 
foundation of classical mechanics. (In this context classical means non relativistic).  
It does not at every instant describe a physical system by its position and  momentum as in 
Newtonian mechanics, but rather by a (complex) wave function )(x

  , were the density 

xd
2|| is the probability to find the system in a certain state.  

According to the uncertainty principle of Heisenberg, it is not possible to determine the position 
and momentum simultaneously for a quantum mechanical system. Quantum physics may seem 
very odd, when you encounter it for the first time – and it certainly is. 
 
The Schrödinger equation describes the dynamical development of a physical system by the wave 
function. 
Compared with Newtonian mechanics the mathematics of the Schrödinger equation is far more 
complex. 
The aim of this section is to solve the Schrödinger equation for what ought to be a simple two 
body system – the Hydrogen atom. But as you will find it requires rather advanced university 
mathematics.  
The Schrödinger equation in polar coordinates is shown below. 
 

(7.1) 









E

r

Ze

rrr
r

rrm








































0

2

2

2

222
2

2

2

4sin

1
sin

sin

11

2


  

 

First we divide this equation by 
m2

2
  and collect the terms on the left side. 
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The first step in solving the Schrödinger equation is to separate it into three equation 
corresponding to the three variable ),,( r . This is done in two steps. First we put: 
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Then we move the factor that does not depend on the other variables outside the differentiation in 
each term. 
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Next we multiply the equation by r2 and divide the equation with YR, rearranging the terms. 
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We can now see, that the first two terms do not depend on ),(  , whereas the last two terms do 
not depend on r. This is only possible if they both are equal to the same constant λ with opposite 
sign. 
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Multiplying the equations with R and Y respectively 
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The next step is to separate the dependence on the angle   from the angle . Multiplying the 

second equation by 2sin , and introducing the functions )(  and )(  by ),( Y = )()(   . 
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Then by division by )()(   , we have: 
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Since the first two terms depend only on θ and the last term only on φ they must be equal to the 
same constant κ with opposite sign. We then have the two equations: 
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The differential equation 
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has the solution: 
   imim ecec  21         

where 2m . 
 
Since φ is the azimuth angle we may choose its zero as we wish, and we therefore put c2 = 0 . 
So the solution becomes: 
(7.7)  imec1  
 
The other equation is a bit harder: 
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We divide this equation by 2sin  to get: 
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We make the substitutions: )()()cos(   xKandx and carry out the differentiations, since 
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To comply with the standard way of writing, we put )1(  ll  
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This equation is, however, just the associated Legendre equation, which has the solution )(xPm

l . 

The Legendre polynomials belong to a rather complex part of university mathematics, and we 
restricts ourselves to the results that can be found in any textbook on the subject or in the article on 
my homepage www.olewitthansen.dk/Mathematics/Legendre_and_associated_Polynomials.pdf   
 
The Legendre differential equation which appears in several connections in physics is: 
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The solution may be given in several different ways but most compactly by Rodrigues formula: 
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The first three Legendre polynomials are. 
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P0(x) is trivially a solution, since it gives: 0220  xx  
 
P1(x) is a solution, since: 0)11(120  xx  
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To show that the general Legendre polynomial is a solution is more tiresome, however. 
 
We shall now return to the equation for the polar dependence, where )cos(x , which has the 

associated Legendre polynomials )(xPm
l  as their solution. 
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The analytic formula for the associated Legendre polynomials is: 
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Where )(xPl  is the Legendre polynomial of degree l. The associated Legendre polynomials have 

the following series expansion: 
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Which, by some rather cumbersome calculations leads to the recursion relation. 
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It is important to notice that when l = n+m , then an+2 = 0, insuring that all an+4, an+6,… are zero. 
In any case for integer l, )(xPm

l  is a polynomial of degree l. 

8. The angular part of the Schrödinger equation 
We have seen above that the Schrödinger equation can be separated into an angular part and a 
radial part. The angular part can furthermore be separated into two differential equations 
corresponding to the polar and azimuth angles. First the azimuth angle. 
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  has the solution imce   where    =- m2 . 

Since the state is supposed to be a stationary we must require: 
 

 )()2(  Zmeee imimim  12)2(    (m is an integral number). 
 
The quantum m is the first of the three quantum numbers which characterize the hydrogen (or any 
atom). It is called the magnetic quantum number. 
 
The differential equation for the polar angle is: 
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The polar equation has the associated Legendre polynomials )(xPm

l  as its solutions. 

We have seen that the solutions are always finite polynomials if l is an integer and:  lml   
The second quantum number for the hydrogen (or any) atom is l.  
The number l it is called the angular momentum quantum number. 
The combination of the solutions to the azimuth and the polar equation )()(    are called 
spherical harmonics. They are denoted: 
 
(8.2)    imm

llm ePY )(),(   lmlandl  ,...1,0  

 
In the operator formulation of the Schrödinger equation, we have: 
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where H is the Hamilton operator (the energy). 
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The spherical harmonics are simultaneous eigenfunctions to the operators L2 and Lz, where  
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 is the angular momentum. 
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The first few spherical harmonics are: 
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8.1 The radial part of the Schrödinger equation 
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It seems practical to introduce the substitution: 
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Even if you find that the solution of the polar equation involve rather complex mathematics then 
the solution of the radial equation turns out to be rather heavy university mathematics.  

8.2 The Laguerre polynomials and related Laguerre function 
The Laguerre differential equation is: 
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The first five Laguerre polynomials, which are solutions to Laguerre’s equation are listed below 
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Laguerre polynomials of any order can be calculated, using the generating function: 
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As an example, we shall generate )(2 xL : 
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The Laguerre polynomials do not form an orthogonal set, but the related Laguerre functions do, 
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since they are orthonormal on the interval  x0 . The Laguerre functions are not solutions to 
the Laguerre equation, but they are solutions to an equation which is related. 
 
As it was the case with the Legendre equation the Laguerre equation has a derived associated 
equation, which contain a second index k. The associated Laguerre equation is, (where k

nL  denotes 

the solutions). 
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It reduces to the Laguerre equation when k =0. The first few associated Laguerre polynomials are 
listed below: In general )()(0 xLxL nn  . 
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Associated Laguerre polynomial are not orthogonal, but associated Laguerre functions of the type: 
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Are orthogonal on the interval  x0 , so the make an orthogonal set. The functions )(xk

n , are 

not solutions to the associated Laguerre equation, but they are solutions to a related equation. 
 
In dealing with the radial part of the Schrödinger equation, we are interested in a slightly different 
associated Laguerre function, where the only difference is that k is replaced with k+1, that is the 
function:  
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These are not only solution to the associated Laguerre equation, but they are also solutions to  
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The main reason for studying this equation, is that the radial equation may be brought in the form, 
(8.8), where that the radial function R(r) that we seek is: rxrR l

n
l
n /)()(  , apart from a 

normalization constant. 
We are now ready to form the connection between the equation above and the radial equation. 
For simplicity we put )(xLv k

j , since the indices do not change in the calculations. 

We then show that vxeyxy kxk
j

2/)1(2/)(   satisfy (8,14). We find the first derivative: 
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Inserting the second derivative and the function vxeyxy kxk

j
2/)1(2/)(    into the equation  
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and reducing with the common factor 2/)1(2/  kx xe , it still requires some non trivial algebra to 
arrive at the (correct) result: 
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Which is the associated Laguerre equation: 
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8.3 Finding the energy levels for the hydrogen atom. 
We have reduced the radical equation to: 
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To comply with the associated Laguerre equation, we make the following substitution:   
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The last equation becomes: 
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Then we make a minor change of variables, since we put 
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Using this substitution the equation reads: 
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Then equation (8.19) is equal to (8.17)) if  
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Equation (8,19) gives us the conditions of quantisation of the energy, but it requires some 
development. 
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From the discussion on the associated Laguerre polynomials the indices j  and l are non negative 
integers. J + l +1 can therefore assume any integer value from 1.  This integer is traditionally 
denoted n. 
  n = j + l +1 
 
We return to the equation (8.19) 
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And for the hydrogen atom, where Z = 1 
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There is a tradition to express the energy by the Rydberg constant. 
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Then the energy levels become: 
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The constant HhcR has the value 13.6 eV, so the energy levels of the Hydrogen atom are given by: 
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The quantity 22 / me has the dimension of a length. It is called the Bohr radius a0. 
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