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1. Review of analytical mechanics in Lagrange’s formulation 
Analytical mechanics is characterized by describing a mechanical system by generalized 
coordinates usually denoted: q1, q2, q3,…,qn.  Differentiating with respect to time is indicated with a 
bullet above the variable e.g. dtdqq / , so that nqqqq  ,...,,, 321  represents the generalized 
velocities. Using the Lagrange approach, the kinetic energy is written as: 
 

),...,,,,,...,,( 321321 nn qqqqqqqqTT  ,  
and the potential energy:  

),...,,,( 111 nqqqqUU   
 

and Lagrange function L is defined as: 
 
(1.1)   L = T - U 
 
The Euler-Lagrange equations of motion are  
 
(1.2)  0




ii q
L

dt
d

q
L


 

 
The generalized momentum is defined by the equation: 
 

i
i q

Lp

   

 
Example: For a particle with Cartesian coordinates (x, y, z), having the kinetic energy  
 

)( 222
21

2
21 zyxmmvT     and the potential energy  U = U(r)  

 
xpxmx

Lorqmq
L 










 
 

qm   is the generalized momentum in the q direction, likewise   
 

q
U

q
LFq 


                 

 
is the generalized force in the q direction.  
 
For a single particle, the Euler–Lagrange equations then become: 
 
 qmFqmq

U
q
L

dt
d

q
L

q 






 00 , 
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This is the familiar Newtonian equation of motion for a particle. 
 
If we differentiate the Lagrangian with respect to time, and if the Lagrangian does not explicitly 
depend on time, ( the partial derivative 0


t
L ),  the derivative can be written: 

 
(1.5)  i

i ii
i

i
qq

Lqq
L

dt
dL




  


  
 
According to Lagrange’s equation: 0




ii q
L

dt
d

q
L


, we can replace 

iq
L


  with 

iq
L

dt
d


  to get: 

 
  














i i
ii

i ii
i

i q
Lqdt

dqq
Lqq

L
dt
d

dt
dL








 

So 
(1.6)   







i i
i q

Lqdt
d

dt
dL


  

 
Subtracting the left side from the last expression we obtain 
 
(1.7)  0


 


i i

i Lq
Lqdt

d


  
 
Hence we see that the quantity  


i i

i Lq
Lq


  remains constant during the motion of any closed 
system. For this reason we identify it with the energy H of the system. 
 
(1.8)   


i i

i Lq
LqH


  
 
We want to establish, that H actually is equal to our usual perception of the concept of energy, as 
the sum of kinetic and potential energy:  H = T + U, and for that purpose we need to apply Euler’s 
theorem for a homogenous function of order n.  
 
According to Euler’s theorem, (which is proven below), we have 
 
(1.9)   




i i
i

i i
i Tq

Tqq
Lq 2





 ,    since 

ii q
T

q
L

 


  
 
(1.10) )(),())(),((),(2),( iiiiiiiiii

i i
i qUqqTqUqqTqqTqqLq

LqH 
 


  
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This concludes the Lagrangian approach to the total energy of a system, expressed by the Hamilton 
function. 
 
1.1 Lemma. Eulers theorem for an homogenous function 
We restrict ourselves to prove Eulers theorem for a function of two variables, the generalization to 
several variables is straightforward. 
 
A real function f(x,y) is said to be homogenous of order n, if it fulfils the condition: 
 
(1.11)  ),(),( yxfttytxf n  
 
If we put tyyandtxx  11 , then 

 ),(),(),( 11 yxftyxftytxf n .  
 
Differentiating each of the last two expressions separately with respect to t, gives: 
 
 

11
1

1
1

1
1 ),( y

fyx
fxt

y
y
f

t
x

x
fyxfntdt

df n 










   

 
because x1 = x, and y1 = y for t = 1, we find,  putting t = 1 in the last equation. 
 
(1.12) y

fyx
fxy

fyx
fxyxnf 







11
),(  

 
Euler’s theorem can easily be generalized to a homogenous function of n variables, if 
 
 ),...,,(),...,,( 321321 n

n
n xxxxfttxtxtxtxf   

Then 
   

 n

k k
kn x

fxxxxxnf
1

321 ),...,,(  
  
Since the kinetic energy is a quadratic form in the velocities iq  
   

 n

i

n

j
jiji qqbT

1 1
  

It is homogenous of order 2, since  )()( 2 qTtqtT   , so according to Euler’s theorem: 
 
  Tq

Tqn

k k
k 2

1


 
      or      

 n

k k
k q

TqT
121 
  

 
One should notice that Euler’s theorem also applies, when the velocities are  replaced with the 
generalized momenta, since the mass part will cancel in the expression. 
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1.2 Hamilton’s equations 
The formulation of the laws of mechanics in terms of the Lagrangian, and Lagrange’s equations 
derived from it, presupposes that the mechanical state of the system is described by its generalized 
coordinates and velocities. 
This is not the only description however. The statistical mechanics, it is more advantageous to 
attach to a description in terms of generalized coordinates qi and generalized momenta pi . The question therefore arises of the form of the equations of motion corresponding to that 
formulation of the laws of mechanics. 
The passage from one set of independent variables to another, can be effected by a so called 
Legendre’s transformation . 
 
In the present case the transformation is as follows: We write the total differential of the Lagrangian 
L = T – U , as a function of generalized coordinates and velocities. 
 
(1.13)   




i
i

ii
i

i
qdq

Ldqq
LdL 


 

Since 
i

i q
Lp 
  by Lagrange’s equation, and

i
i q

Lp

  by definition of the generalized momentum 

(1.13) can also be written 
 
(1.14)   

i
ii

i
ii qdpdqpdL   

Writing the second term in (1.6) as: 
(1.15)     




i
ii

i
ii

i
ii dpqqpdqdp    

 
Taking the differential to the left hand side, and reversing the signs, we obtain: 
 
(1.16)   


 

i
ii

i
ii

i
ii dpqdqpLqpd   

 
In (1.8) we identified  


i i

i Lq
Lq


  with the Hamilton function H, that is the energy of the system, 
and (1.16) can then be written as a total differential of the Hamilton function H. 
 
(1.17)   

i
ii

i
ii dpqdqpH   

From this equation immediately follow the Hamiltonian Canonical Equations i.e. the equations of 
motion: 
(1.18) 

k
k

k
k

q
aqpH

dt
dp

p
aqpH

dt
dq




 ),,(),,(  
 
Where the a’s are parameters belonging to the external forces on the system. 
qk is the generalized coordinate, and the generalized momenta are defined as:  
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(1.19)  
kk

k q
qqT

q
qqHp












 ),(),(  
 
Example: For a particle with Cartesian coordinates (x, y, z), having the kinetic energy  
 

)(2
1 2222

21 zyx pppmmvT    , and the potential energy U(x, y, z) 
We find: 
  

kk
kk

k
k

q
U

q
aqpH

dt
dp

m
p

p
aqpH

dt
dq





 ),,(),,(  

 
Corresponding to the Newtonian equation of motion 
 
2. Foundation of statistical mechanics 
Let us consider a system of r particles with the masses: rmmmm ,...,,, 321  having the Cartesian 
coordinates ),,( iii zyx , and the generalized coordinates: q1, q2, q3,… qn = q (shorthand notation) 
The coordinates may have imposed some constraints, so that n < 3r. 
 
There consist certain relations between the Cartesian and the generalized coordinates: 
 
  )(),(),( qzzqyyqxx iiiiii   
From which it follows: 
 
(2.1) k

n

k k
iik

n

k k
iik

n

k k
ii qq

zzqq
yyqq

xx    





111
 

 
The kinetic energy is:  
 

         



 









 









 





 r

k

r

i

n

k
k

k
ii

r

i

n

k
k

k
ii

r

i

n

k
k

k
iiiiii qq

zmqq
ymqq

xmzyxmT
1

2

1 1

2

1 1

2

1 1
222 ½½½)(½ 

 
(2.2)   

 n

j

n

k
kjkj qqdT

1 1
  

 
Where kjd  is a positive definite quadratic form, where the coefficients di j do no depend explicitly 
on ii niq ...1,    The generalized momenta are given by: 
 
  nkq

T
q
Hp

kk
k ...1





 

 
From which it follows that the generalized momenta are a linear function of the generalized 
velocities. 
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(2.3)    n

j
jjkk nkqdp

1
...12   

 
These linear equations can (in principle) be solved for the jq to give: 
 
  ),( qpqq jj    
 
When inserted in (2.2), the kinetic energy can then be expressed as a function of p and q. 
 
  T = T(p,q) 
 
It is a well known fact from classical mechanics, that if the positions and the velocities of a system 
of particles are known at a certain time, and forces that act on the particles are also known as a 
function of position, then through the equations of motion the position and velocity of the particles 
can be prcisely predicted at any later time.  
 
This is called the determinism in classical physics. 
 
We have here assumed that all forces in question, internal forces as well as external forces are 
conservative, that is, they can be derived by a potential.  
The external forces are thought to be given by some parameters a, so that the potential energy can 
be written as. 

),...,,,,...,,,( 21321 mn aaaqqqqUU   
 

If dA denotes the work, that the system forces exert, when the system changes its configuration 
from (p,q) to (p+dp, q+dq), then we have: 
 
(2.4)  k

n

k k
qdq

UdA  


1
   

Whereas in (1.3) 
  

k
k q

UF 
  

 
Is the generalized force component in the direction of qk .  
Similarly   

k
k a

UA 
   

is the k’th component of the generalized force, which the system performs on the surroundings. 
The Hamilton function H, that is, the energy in generalized coordinates, is given by: 
 
(2.5)  ),(),( aqUqpTH     
 
And the equations of motion is written in the canonical form: 
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(2.6) 
k

k
p

tqpH
dt

dq


 ),,(  
k

k
q

tqpH
dt

dp


 ),,(  
 
2.7 Example. Uniform circular motion. 
In a uniform circular motion driven by a potential rrU )( , the Hamilton function is rm

pH  2
2

,  
and we therefore get:   

vm
p

p
tqpH

dt
dq

k
k 

 ),,(    2
),,(

rq
tqpH

dt
dp

k
k 

  
As we should. 
  The mechanical state of the system is completely determined, when the values for the 2n 
variables ),...,,,,,...,,,(),( 321321 nn qqqqppppqp  , called the mechanical phase of the system are 
known. The phase of the system changes, according to (2.6). 
 
The phase space is a space spanned by the 2n variables. (p,q), and the infinitesimal volume element 
is given by: 
 
(2.8) nn dqdqdqdqdpdpdpdpdpdqdV  321321    
 
If we have a subspace Ω, confined by the points in phase space imposed by a hyper 
surface constqqqqppppf nn ),...,,,,,...,,,( 321321 , the volume of Ω is given by the 2n 
dimensional integral. 
 
(2.9)     

 
constqqqqppppf

nn
nn

dqdqdqdqdpdpdpdpV
),...,,,,,...,,,(

321321
321321

...  

3. Gibb’s ensembles 
If we have a system where the thermodynamic state is known, it does not mean that the mechanical 
phase is known in detail. If we have two systems having the same Hamilton function being in the 
same thermodynamic state, we shall in general find that they do not have the same mechanical 
phase.  
We may only speak of a probability that the phase of the system is in a certain volume Ω of phase 
space. 
It is our aim to define these probabilities more precisely. At a certain time, we consider an ensemble 
of huge number of systems with the same Hamilton function, and in the same thermodynamic state. 
 
This means that the thermodynamic state functions are the same, and that the external conditions 
also are the same. If we (hypothetically) measure the mechanical phase of all these N systems and 
depict their phases as a point in the 2n dimensional phase space, we get the distribution of systems 
in phase space. Let the number of points in a volume Ω be NΩ. Then the probability of finding a 
system in Ω is: 
(3.1)  N

NP N


  lim       
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That P  actually represent a probability of physical significance, we may not know in advance, and 
drawing consequences from this probability function can only be justified by experience, comparing 
results belonging to the world of physical realities. 
If we let Ω shrink into an infinitesimal volume element dV= dpdq, then we can define P(p,q)dpdq 
as the probability of finding the phase of the system in the volume element dV.   
  
The probability of finding the system in a phase space volume Ω is then 
 
(3.2)      nn dqdqdqdqdpdpdpdpqpPP 321321),(...)(  

 
Where the integrals are extended over the volume Ω. 
 
The integral over the total phase space of the probabilities must normalize to one. 
  
(3.3) 1),(... 321321     nn dqdqdqdqdpdpdpdpqpP  
 
We shall also define a density function D(p,q).  If there are a total of N systems in the ensemble, 
then the statistical density of systems lying in a volume element dV around (p,q) is:  
 
  D(p,q) = N∙P(p,q) 
4. Lionville’s theorem 
We shall then consider how the systems depicted as point in the 2n phase space will develop in 
time.  
Let us assume that some system points at t = t0 occupy a volume Ω0 in phase space. At a later time t 
the same points occupy a volume Ωt. Lionville’s theorem states, that the two volumes are equal.   
 
At t0 the phase space volume element is 030201003020100 nn dqdqdqdqdpdpdpdpdV  , and at a 
later time, it is nn dqdqdqdqdpdpdpdpdV  321321  
The transformation between the two differentials is given by the functional or Jacoby determinant: 
 
(4.1)  00

00
)det( dqdpqp

qpdpdq 
  

Or when written out: 
 

nn dqdqdqdqdpdpdpdp  321321 = 
 03020100302010

03020100302010
321321

),...,,,,,...,,,(
),...,,,,,...,,,(

nn
nn

nn dqdqdqdqdpdpdpdpqqqqpppp
qqqqpppp 

  
 
Where 
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(4.2) ),...,,,,,...,,,(
),...,,,,,...,,,(

03020100302010
321321

nn
nn
qqqqpppp

qqqqpppp


 =

010010

0
1

10
1

0
1

10
1

010010

0
1

10
1

0
1

10
1

...
......
......
......

n
nn

n
nn

nn

n
nn

n
nn

nn

q
q

q
q

p
q

p
q

q
q

q
q

p
q

p
q

q
p

q
p

p
p

p
p

q
p

q
p

p
p

p
p











 









 









 











 

 
We shall then calculate the two integrals, corresponding to the volumes of phase space that occupy 
the system points at t0 and at t0 + δt,  where  δt, is a small increment. 
 
To calculate the partial derivatives in the determinant (4.2) we use the canonical equations: 
 
 

k
k

q
tqpH

dt
dp


 ),,(      and            

k
k

p
tqpH

dt
dq


 ),,(  

 
To a first order approximation we have: 
 
(4.3) tq

tqpHtptdt
dptpttp

k
kkkk  

 ),,()()()( 000   
or without the explicit time dependence: 
 
(4.4) tq

tqpHptdt
dppp

k
kkk  

 ),,(
00  

From which we obtain 
 
(4.5) tpq

tqpH
p
p

jk
kj

j
k  


 ),,(2     and       tqq

tqpH
q
p

jk
kj

j
k  


 ),,(2  

 
And similarly for the coordinates qk.  
(4.6) tp

tqpHtqtdt
dqtqttq

k
kkkk  

 ),,()()()( 000   
 
Or without the explicit time dependence:  
 
(4.7) tp

tqpHqtdt
dqqq

k
kkkk  

 ),,(
00  

And consequently: 
 
(4.8) tpq

tqpH
q
q

kj
kj

j
k  


 ),,(2      and    tpp

tqpH
p
q

kj
kj

j
k  


 ),,(2  
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When inserted in the determinant (4.2), we find. 
 
(4.9) 

 ),...,,,,,...,,,(
),...,,,,,...,,,(),(

03020100302010
321321

nn
nn
qqqqpppp

qqqqppppqpDet  
 

tpq
tqpH

tpq
tqpH

ttO
qp

tqpH
tOtqp

tqpHtqp
tqpH

tqp
tqpHtqp

tqpH

nn

nn






























),,(1...........

),,(1
)(

),,(1..................
)(),,(1),,(

..........),,(),,(1

211

2
2

2

2
22

2

12

2 12

2

11

2

= 

 
)(1)(),,(),,(1 22

1

2

1

2 tOtOtpq
tqpHtqp

tqpH n

k kk

n

k kk
 


  

 

This means that the derivative of the determinant 0)(lim),(lim 2
00 

 t
tO

t
qpDet

tt 


   for all values of 
t, and it therefore follows that it is constant = 1 independent of t. 
 
From this, it then follows: 
 
(4.10)      nn dqdqdqdqdpdpdpdpV 321321... = 
 
    


03020100032010

03020100302010
321321

),...,,,,,...,,,(
),...,,,,,...,,,(... nn

nn
nn dqdqdqdqdpdpdpdpqqqqpppp

qqqqpppp  = 
 

0030201000320101...     Vdqdqdqdqdpdpdpdp nn  
 
As a consequence, all phase points, which lie within Ω0 at time t0 lie within Ω at time t, and the 
phase space volumes of Ω0 and Ω are the same, according to (4.10). 
 
This on the other hand implies that the density ),,( tqpD of systems points in a phase space volume 
is constant independent of time. ),(),,( qpDtqpD  . In other words: 
 
The density ),( qpD  is an integral to the equations of motion. 
 
This can however also be inferred from the differential equation: 
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(4.11)   








 n

k
k

k
k

k
pp

Dqq
D

t
D

dt
dD

1
    

 
Where stability means that 0


t
D . Using the Hamilton canonical equations: 

 
 

k
k

p
tqpH

dt
dq


 ),,(     

k
k

q
tqpH

dt
dp


 ),,(  

(4.11) can be written as: 
 
(4.12)  

















 n

k
k

n

k kkkk
HDt

D
q
H

p
D

p
H

q
D

t
D

dt
dD

11
},{  

 
The Poisson parenthesis kHD },{  is defined by 
 

kkkk q
H

p
D

p
H

q
D









  

If F is a physical expression, that does not explicitly depend on time i.e. 0


t
D , then F  is an 

integral to the equations of motion, if the Poisson parenthesis vanish:  
 
(4.13)  0dt

dF      00},{ 









kkkk q
H

p
F

p
H

q
FFH  

 
If  (4.12) reduces to 0},{ DH , that is, the density is a integral to the equations of motion. 
(4.11) can also be written:  
 
(4.14)  





 n

k k
kn

k k
k

p
pD

q
qD

t
D

dt
dD

11
0)()(    

 
Also, and not surprisingly, (4.14) has an complete analogy to the continuity equation of an 
incompressible fluid with density ρ, if we replace D with ρ, and the coordinates q, with the 
Cartesian coordinates x, y, z, and v  represents then stream density or the flux.  
 
(4.15) 0)()()()()()()( 














x
v

x
v

x
v

tx
z

x
y

x
x

tvt
zyx    

 
One may formally prove that the probability of finding a system in a given position in phase space 
is independent of the choice of coordinates, but we shall relax on the proof, since anything else 
would be absurd from a physical point of view.  
This ends the formal treatise of statistical mechanics, and we shall now turn to its applications to 
theoretical thermodynamics. 
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6. Application of the statistical mechanics on thermodynamic systems 
A stated earlier, even if we know the thermodynamic state completely, and also know the 
mechanical conditions (p,q), the position of a system in phase space can not be determined.  
The best we can do is to calculate a probability density function P, which turns out to be some 
function of (p, q), being the probability P(p,q)dpdq of finding the phase of a system within the 2n 
dimensional infinitesimal volume dpdq.  
 
Once the Hamilton function is known, we can assign a probability density function P(p,q) to every 
ensemble of systems all being in the same thermodynamic state. 
 
We shall focus on systems in thermodynamic equilibrium, that is, with a well defined temperature 
T, and our aim is to establish a connection between the thermodynamic variables of state and the 
probability density function, which we write. 
 
(6.1) P(p, q, T, a) 
 
Where a = a1, a2,… represent the external conditions on the ensemble of systems. 
We shall begin by investigating the properties of a system holding a constant temperature T 
We know already that the density and probability density functions are constant following a system 
point (p,q) along its path in phase space. 
 
(6.2)  ),,(),,(),,(),,( 000000 tqpPtqpPortqpDtqpD   
 
The distribution of systems that correspond to statistical equilibrium, must however also obey    

),,(),,( 0000 tqpDtqpD  , that is, the density must be constant along each curve, and only change 
from curve to curve. 
 
A system curve in phase space can theoretically be considered as the intersection of 2n – 1 hyper 
planes, having the equations I1(p,q) = c1 , I2(p,q) = c2 ,…, I2n-1(p,q) = c2n-1. These equations are then 
2n –1 integrals of motion. As one of these integrals, we can always choose the energy H(p, q).  
 
To each set of constants c1, c2, c3,… c2n-1, corresponds one curve in phase space.  
 
Therefore, any time independent integral i.e. the density D or the density probability P, may be 
expressed by these 2n-1 independent integrals. 
 
(6.3)  P = P(I1(p,q) , I2(p,q)  ,…, I2n-1(p,q) ) 
 
And we can the write (6.1) as: 
 
(6.4)  P = P(I1(p,q) , I2(p,q)  ,…, I2n-1(p,q), T, a ) 
 
The Hamilton function is such an integral, and for other special system, one may indicate other 
integrals, but the only integral that is common for all system is the energy H, so we infer that. 
 
(6.5)  P(H,T, a) 
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7. Determination of the probability density function 
To establish an expression for the probability density function, we shall use the simple fact that two 
systems A and B both in thermodynamic equilibrium at the same temperature T, subsequently, when 
they are brought together, will be in thermodynamic equilibrium at the same temperature, provided 
that the interaction between the two systems is very small compared to their energy. 
We shall denote all variables belonging to the system A with an index A, similar with the system B. 
When they are brought together the system variables are without an index. 
 
System A:   Coordinates: qA = qA1 , qA2 , qA3 ,… qAl .   (Number of degrees of freedom l) 
Momenta: pA = pA1 , pA2 , pA3 ,… pAl.   
Parameters: aA = aA1 , aA2…. 
Hamilton function: HA = HA(pA , qA , aA)  
Probability density: PA = P(HA , T, aA) 
 
System B:   Coordinates: qB = qB1 , qB2 , qB3 ,… qBl .   (Number of degrees of freedom m) 
Momenta: pB = pB1 , pB2 , pB3 ,… pBm.   
Parameters: aB = aB1 ,  aB2…. 
Hamilton function: HB = HB(pB , qB , aB)  
 
Probability density: PB = P(HB , T, aB) 
 
Composite system A + B     (Number of degrees of freedom n = l + m) Coordinates: q = q1 , q2 , q3 ,… qn .    
Momenta: p = p1 , p2 , p3 ,… pn.   
Parameters: a = a1, a2,… 
Hamilton function: H = H(p , q , a) + U(qA ,qB , aA, aB)  
Probability density: P = P(H , T, a) 
 
If VAB  is the potential of interaction between the two systems, we assume that  
 
 VAB << HA   and  VAB << HB 
 
For this reason, the probability density is by a good approximation equal to P = P(HA +HB , T, a). 
The probability of finding the systems A and B in the infinitesimal phase space volumes dpAdqA and 
dpBdqB  are: 
 
 (7.1)                     P(HA , T, aA) dpAdqA    and    P(HB , T, aB) dpBdqB 
 
Since the two systems are independent of each other, the probability finding A in dpAdqA and B in 
dpBdqB is the product of the two probabilities. However since the systems are considered to be in 
thermodynamic equilibrium, this probability must also be equal to the probability as finding the 
composite system A  + B in dpAdqA dpBdqB , having the same thermodynamic state.  
 
(7.2)     P(HA +HB , T, aA ,aB) dpAdqA dpBdqB = P(HA , T, aA) dpAdqA PB(HB , T, aB) dpBdqB. 
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We have assumed that we have the same probability function in phase space referring to different 
ensembles. That this is in fact the case can be proven formally, but we relax on the proof, since 
otherwise the theory would be in great trouble. 
 
The phase space volume elements cancel, and if we omit all parameters except the energy H, 
equation (6.6) is reduced to: 
 
(7.3) P(HA +HB) = P(HA)∙ P(HB) 
 
This is however the functional equation for the exponential function: f(x) = eax.  
 
The equation is usually written: f(x + y) = f(x) f(y).  
 
We therefore stipulate as a working hypothesis, that the probability density function has the general 
form: 
(7.4) HceaTHP ),,(  
 
where λ must be a universal function of T, independent of the system in consideration.  
 
The constant c will be determined by the normalization condition: 
 
(7.5)     1),,(... 321321 nn dqdqdqdqdpdpdpdpaTHP  
 
 1... 321321     nn

H dqdqdqdqdpdpdpdpce  
 
Since the integral is extended over an infinite space, the exponent λH must necessarily be negative. 
We therefore put  
(7.6)  


 ecand  1    

 
and the get the following expression for the probability density. 
 
(7.7)  

 H
eaTHPP

 ),,(  where θ = θ(T)  > 0 
 
The constant ψ, can be determined by (7.5) or by the equivalent equation: 
 
 (7.8)      

nn
H

dqdqdqdqdpdpdpdpee 321321... 


 
 


e  is a function of T and the external parameters (a), i.e. a function of the thermodynamic state.  

We shall later determine θ as a function of the temperature, and it will turn out, that θ = kT, that is, 
proportional to the absolute temperature T.  
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The probability distribution (7.7) is called the Gibb’s canonical distribution, and the corresponding 
ensemble a canonical ensemble.  
 
Let us consider two systems (1) and (2) both in thermodynamic equilibrium and bring them 
together. The probability distribution for the composite system is then: 
 
(7.9)  2

2
1
1

2
2

1
1

21




 HH

ePPP   
 
But this distribution will not correspond to thermodynamic equilibrium if θ1 ≠ θ2 , because in that 
case  
(7.10)  

2
2

1
1 

HHF    
 
can not, even approximately, be an integral to the equation of motion with Hamilton function 
 H = H1 + H2 + U. The reason for this is, that the condition for physical variable F to be an integral 
to the equation of motion  is that the Poisson parenthesis of F with H vanishes. 
 
 (7.11)  

kkkk q
H

p
F

p
H

q
FFH 







},{   

And it is obvious that (7.10) does not comply. 
 
But this is in accordance with experience, (and the second law of thermodynamics) that the 
thermodynamic equilibrium is disturbed, when two bodies having different temperatures are 
brought together. 
Only when θ1 ≈ θ2 (7.9) will approximately correspond to statistical equilibrium. 
 
If the statistical equilibrium shall be maintained for all systems and all kinds of mutual interaction, 
one is lead to the conclusion that the probability density can depend only on the energy of the 
system. 
8. Mean value of and fluctuations in the energy of the Gibb’s ensemble  
From (7.8) it is seen, that a body at a certain temperature does not necessarily have a definite 
energy. On the contrary the energy is given by a probability distribution function (7.7). 
   
In the empirical thermodynamic one nevertheless often describes a system as having a certain 
internal energy E = E(T, a), which is a function of the thermodynamic state.  
E can not however be identified with H, which is a function of the undefined mechanical state (p,q).  
On the other hand the mean value of H, taken over the ensemble may be identified with E. 
 
(8.1)      

nn
H

dqdqdqdqdpdpdpdpHeH 321321... 


 
 
As a preperation to evaluate the mean of H, we shall first evaluate the mean of the kinetic energy T. 
(not to confuse with the temperature T) 
According to Euler’s theorem, which applies to any quadratic form in pk.  
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(8.2)   
 n

k k
k p

TpT
1

21  
Furthermore 
 
 







  H
k

k

H
k

k

H
edpp

Hedpp
Te

 


            (Since 
kk p

H
p
T




  )  
 
This result we shall apply, when calculating the mean value of the kinetic energy. 
  
(8.3) nn

Hn

k
dqdqdqdqdpdpdpdpeTT  

   321321
1

... 


 
Using Euler’s theorem 
(8.4) nn

n

k

H

k
k dqdqdqdqdpdpdpdpep

TpT 
  


321321

1
21 ... 


 

 
Where the limits of integration all go from  to . 
We first look at the integral with respect to pk , which we do by partial integration. 
 
(8.5)  












 





k
HH

k
H

kk
H

k
k dpeepedppdep

Tp 









  )(  

 
The first term on the right hand side vanishes, and the final integral is equal to 1, by the 
normalization condition. When inserted in (8.4), then by definition of the probability distribution 
function. 
(8.6) 

 
 

nn
H

k
k dqdqdqdqdpdpdpdpep

Tp 321321 ..  

It then follows: 


2... 321321
1

21
ndqdqdqdqdpdpdpdpep

TpT nn
n

k

H

k
k 
   


 

(8.7)   2
nT   

 
This is the principle of equipartition, also known from the kinetic theory of gasses. 
 
We proceed to calculate the square of the standard deviation of T. 
 
(8.8)  2___2________ 22 )()( TTTTT   
 
This can be calculated by the same means as (8.4).  
 
(8.9) ___2T nn

Hn

k
dqdqdqdqdpdpdpdpeT 

  321321
1

2
21 ... 


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nn
n

k

H

k
k dqdqdqdqdpdpdpdpep

TTpT 
  


321321

1
21

___2 ... 


 
 

For simplicity we extract the integral over pk:  
)( 




  H
kk

H

k
k edTpdpep

TTp
  

   (since 
kk p

H
p
T




 ) 

               









 k

H

k
k

H
k dpep

TpeTp 



  )(  

 
The first term vanishes, and we do the integral as we did before, now implying the full sum and 
integration over all variables: 
 




  
k

H

k
kk

H

k
k dpeTp

Tpdpep
Tp 




  )()(  

(8.10) TTndpTedpep
Tp k

H
k

H

k
k  




 
  

2  

(8.11) 22222___2________ 22 22
2)()( TnTTnTTTnTTTTT    

And consequently:  
(8.12)  nT

TT
T

T 2)()(
2

________ 2
2

2   
 
This means that the probability, when measuring the kinetic energy of a system, to find a value 
which deviates more than T  from the mean is equal to n

2  .  
For thermodynamic systems the number of particles is usually of the order of Avogadro’s number  
NA = 6,0 1023, so usually the deviations from the mean are immensely small, and this result will not 
alter even if we alter the deviation to 1/10,000 of T . 
 
To obtain similar results for the total energy H, we start out from the equation (7.8): 
 

     
nn

H
dqdqdqdqdpdpdpdpee 321321... 


 

 
Which defines ψ as a function of the temperature and the external parameters (a).  
Taking the differential of this equation gives. 
 

     





nnl
m

l l

H
dqdqdqdqdpdpdpdpdaa

HdHedde 321321
122 )1(...)( 



 


 

Multiplying the equation by 
e , we get: 
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




   
   







nn
H

l
m

l l

m

l
l

nn
H

dqdqdqdqdpdpdpdpedaa
Hda

dqdqdqdqdpdpdpdpHeddd

321321
11

321321

)(...

...











 


  )(

1

____

l
m

l l
daa

HdHd 
  

(8.13) 
l

ll
m

l
l a

HAwheredaAdHd 
 1


  

 
Al is the l’th component of the generalized force, on which the system act on the environment. 
For simplicity we define η, the probability exponent as: 
 
(8.14)  

 H  
Then   l

m

l
ldaAdd 

1
  

 
From which it follows that ψ is a function of the variable θ and the external parameters al.  
(8.15)  

 
       and      

l
l aA 

   
From 

 
 
   

and  


  HH   
we find 
(8.15)  

 
H  

 
From the definition of the mean of H we have, 
 
(8.16) nn

Hn

k
dqdqdqdqdpdpdpdpeHH  

  321321
1

... 


 
 
We get by a partial differentiation with respect to θ 
 

nn
Hn

k
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(8.17)  


H ____2
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


 
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And according to (8.15)  


 
H  

We find 


 


 HHH 2____2 )(  
 

 


 HHHHHHH 22____2222____2 )(  
 

(8.18)   
 HH 22 )(        

and by  

 
H         

it follows  
(8.19)  2

2
2

2










 






H       

So that 
  2

232 )( 
 

H  
Using   

 
 HH 22 )(    

and changing the variable from θ to the kinetic energy n
TnT 2

2    we get: 
 
  T

H
nn

THH 


 24)( 2
222   

Arriving at 
(8.20)  T

H
nT

H

 2)(

2
2  

 
Generally T

H

  is of order 1, so we can draw the same conclusions about the fluctuations in the total 

energy as for the kinetic energy. Even if T
H

  is very large in some small temperature interval, it 

will not change the conclusions about the fluctuations significantly. 
 
Temperature and mechanical phase are complementary in the sense of Niels Bohr.  
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The temperature is a statistical concept based on a probability distribution of an ensemble, whereas 
the mechanical phase of the individual systems are unknown.  
On the other hand, if the mechanical phase is well known, it does not make sense to talk about the 
probability of finding the system in that mechanical phase (since it is known), and consequently it 
makes no sense to talk about temperature. 
9. Fluctuations in the external components of force on an arbitrary system 
 Differentiation of the equation 
 

1... 321321     
nn

H
dqdqdqdqdpdpdpdpe 


 

 
With respect to the external parameters al gives: 
 
(9.1) 0)(... 321321 


    

nn
H

ll
dqdqdqdqdpdpdpdpea

H
a 

  
Integrating the two terms separately gives: 
(9.2)  
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Now differentiating (9.1) with respect to ak gives: 
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Then using (9.2) 
(9.3) 











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
klkl

kkll aaaa
HAAAA  2______2______________________ )()(         (l, k) = (1,2…,m) 

 
By differentiating (9.1) with respect to θ, we find in a similar manner. 
 
(9.4)  

l
l

l
ll a

A
aHHAA 


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 
 2222______________________ )()(  

10. Determination of θ as a function of absolute temperature 
Let us consider an ideal gas, consisting of n 
particles with equal masses m, (since the 
extension to a mixture of gasses is trivial). 
They move freely in a container supplied 
with a piston that can be pushed in and out 
without friction. The Cartesian coordinates of 
the i’th particle is  (xi , yi ,,  zi)  i = 1…n,  

And the generalized coordinates and momenta are: qi  i = 1…3n and  pi  i = 1…3n. 
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The kinetic energy is: 
(10.1)    n

k
kkk zyxmT

1
222

21 )(      
and the associated momenta are:  
  ),,(),,( kkkkzkykx zmymxmppp   
 
The surroundings are the walls of the container and the piston. Their influences on the system 
consist of the impact of the particles with the walls, where the particles are recoiled at a very large 
acceleration. This may be represented by a potential for the i’th particle given by: 
 
(10.2) ),,,( azyxUU iiii     
 
Where (a) represent the surroundings. We have assumed that the potential has the same form for all 
particles. The total potential U is then the sum of all the potentials Ui.   
There might be an interactive potential between the individual particles, but for an ideal gas, it can 
safely be neglected. We assume that the system is in thermodynamic equilibrium having the same 
overall temperature. The corresponding probability density is then: 
 
(10.3) 




 UTH
eeP

    (Here T stands for the kinetic energy) 
 
We begin by calculating ψ as function of θ and a. 
 
(10.4)        
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

 
The integration over xi can be done, if we introduce the variable ixmt 2   

(10.5)  mdtemxmde t
i

xm i 22 2
2

2   










 
 

The same integration is performed over all the other velocity variables.  
The potential ),,,( azyxUU iiii   = 0, except at the walls, where it is extremely large, but it 
does not contribute to the integral, so the integration over the coordinates gives: 
 
(10.6) Vdzdydxedzdydxe iiiiii

azyxU iii        0
),,,(

      
 
Where V is the volume of the container. We thus have according to (10.4):   
 
(10.7)  n

n
Vme 2

3
)2( 

   
 
Or when taking the logarithm on both sides 
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(10.8)  ))2(ln( 2
3 mVn  

 
If D is the area of the piston and a is of the distance from the bottom of the cylinder to the piston, 
then the volume V = Da, and according to   (10.2)  
 

l
l aA 

    
The force on the piston is 
(10.9)  V

nD
VDaA  


  
 
One may also from (9.3) calculate the square of the standard deviation.  
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Since V = Da, we get, using (9.4): 
 

l
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l
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(10.11)  2
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2 1)( V
nD

VnVDa
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
  

 
Since the kinetic energy T does not explicitly depend on the coordinates qi ,and   n

i
iUU

1
we have 

 


 n

i
i

a
U

a
H

1 2
2

2
2  

And furthermore the factor 
T

e can be put outside both integrals and cancel each other. 
 

(10.12)    
  




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
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2
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As before the denominator gives nV , since we integrate over the volume V of the cylinder, and  
U = 0 , except at the walls. Concerning the potential ),,,( azyxU iiii  we shall simply assume, that it, 
within a tiny interval δ grows to a very large value U0 , at the walls of the container, and that the 
position of the piston is given by a. We further assume that the direction of a is the direction of the 
x-axis, so that the potential Ui is a function of (xi – a). It then follows: 
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 

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Therefore we have: 
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We consider now the i’th term in this sum: 
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The integration over dydz, just gives a factor D, so we get: 
 
(10.14)      


i

U

i
in dxex

UDV i2
21 ...  

 
Ui is vanishing except for a very small interval δ, and we get by a partial integration, omitting the 
index i. 
    




 dxxUexUxUexdUedxex
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The first term is 0, because U’(x) = 0 outside the tiny interval, and the last integral, does not depend 
significantly how the potential grows within the tiny interval. Since we are only interested in the 
magnitude, we can assume that U(x) grows linearly with x, so that:   0)(' UxU  constant. 
Then we find: 
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So according to (10.11),  (10.12), (10.13) 
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Then from (10.9) , (10.10), (10.11) 
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When n is sufficiently large the fluctuations in the force will remain vanishingly small, even if  
 
    aandU 10   
 
With a reasonable estimate of the parameters involved one finds: 
 
(10.15)  11

2
2 10)( A

A  
 
In other words, we may identify A with the force that gives rise to the pressure that the molecules 
exercise on the on the walls of the container. 
In other words: PDA  , where P is the pressure and D is the area of the piston. We therefore get, 
according to (10.9) V

nDA  , and consequently, since D
AP   

(10.16)   V
nP      

 
This, we can compare to the equation of state for an ideal gas. 
 
(10.17)  RTnPVornkTPV M  
    
 k is Boltzmann’s constant k = 1.372 10-16  J/K. 

A
M N

nn  is  the mole number, and  
NA= 6.023 1023/mole,  is Avogadro’s number. From (10.13) and (10.14) we then see: 
 
(10.18)   kT  
 
For the mean value of the energy, we have from (10.15)  
 
(10.19) 
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 
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 1

2
3)2(ln)2(ln 2

3
2
3

nmVmVnH  
(10.20)   nkTH 23  
 
So the internal energy is proportional to the absolute temperature, and it is independent of the 
external parameters (a), that is, the volume V.  
This is in accordance with the experimental results of thermodynamics. Equation (10.20) is 
therefore considered one of the major achievements of statistical mechanics. 
Furthermore the numerical value of nk23 is in accordance with that for one-atomic gasses:   
  
(10.21)  RnnkT

HC MV 2323 
   
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11. Maxwell’s velocity distribution 
The probability of finding a specific molecule (1) within a volume : 111111 dzdydxdpdpdpd zyx  of 
phase space is: 
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This is valid for each molecule, that is, every molecule is canonically distributed. So we may drop 
the index (1). Crucial for this assertion is that the mutual interaction between the molecules is 
vanishing. The constant ψ1 can be determined by: 
 
(11.2)  1111111
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dzdydxdpdpdpe zyx

H
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When the number of molecules is very large, we can perceive this as an ensemble of molecules with 
temperature θ = kT. The number of molecules having velocities ),,( zyx vvv  in the velocity volume 

zyx dvdvdv  must then be proportional to. 
 
(11.3)  zyx
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m
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Introducing polar coordinates, where 222

zyx vvvv   , which gives the volume element 
 dddvvdV sin2 , we may after a trivial integration over the angles, write the  probability of 

finding a molecule with speed v in the interval dv. 
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Where the constant is to be determined by the condition:  

0
1)( dvvP  
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Introducing the variable: 
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dxm
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The integral becomes: 
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The integral is evaluated by the method of partial integration, as formulated below.  
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And (11.6) becomes: 
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And this finally yields the velocity distribution of Maxwell 
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A curve representing this distribution is shown below. 
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The most frequent speed of the molecules, that is, the value of v, where curve has its  maximum, 
can be found by differentiating the function. 

kT
mv

evvf 2
2

2)(   
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(11.10) m
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Inserting values for N (Nitrogen) MN = 28u, T = 300 K (room temperature), Boltzmann’s constant  
k  = 1.381 10-23 J/K and mN = 28 ∙ 1.660 10-27 kg, we get for vmost frequent = 422 m/s. 
 
We may also calculate the mean value of v. 
 
(11.11) 2

0
22

0
23

0

223223

2
1

2
4

2
4)( dvevkT

mdvevkT
mdvvvP kT

mv
kT

mv     





   
 
As before, we make the substitution: 2222 2
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Integrating by parts 
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We find:  

m
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Using the same values, as we did above, we find: smv /476 .  
12. Perrins experiment 
Let us consider a liquid, having a certain temperature, in which a large number of particles with 
mass m and volume v are suspended. The particles are considered microscopic i.e. they can only be 
observed in a microscope. Let us consider an arbitrary one of these particles. The only thing we 
know is that the particles are in thermodynamic equilibrium with its surroundings.  
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The probability of finding a particle in the phase space volume dpxdpydpz dx dy dz must therefore be 
given by the canonical distribution: 
(12.1)  dzdpedzPdp xkT

H
x ......

 
  

 
Since we are only interested in the position of the particle, we first integrate over the momenta.  
The spatial distribution is then given by: 
 
(12.2)  dxdydzecdxdydzP kT
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The microscopic particle is only affected by the gravitational potential U(h) = mvgh, where h is the 
height over some reference level. v is the volume of the particle and mv is the mass of the particle, 
reduced by the buoyancy from the liquid with density ρ. The potential of a particle in the liquid is: 
 
(12.3)  gzvmzyxu )(),,(   
 
The probability of finding a particle within the volume element is then according to (12.2) 
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The probability depends only on the vertical coordinate z, so the relative number of particles in the 
slice dz, can be written: 
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This formula has been experimentally verified by Perrin, who manually counted the number of 
particles, using a microscope. In accordance with (12.5) he found an exponential decreasing number 
of particle with height, and he was able to determine the logarithmic slope kT

gvm )(  .  
Doing separate experiments, he could also estimate the mass and volume of the particles.  
Bringing the results together Perrin was also able to obtain a value for Boltzmann’s constant k.  
Since k = R/NA, where R is the gas constant, the experiment also delivered a value for Avogadro’s 
number NA,.  
13. Entropy and Helmholz’s free energy 
In the preceding sections, we have acquired the means to calculate the “internal energy” of a system 
in thermodynamic equilibrium at a temperature T, identifying the energy E with the mean of the 
Hamilton function H taken over the canonical ensemble.  
We shall now proceed to do the same, concerning the entropy. The entropy is only defined apart 
from a constant, since it is only meaningful to talk about differences in entropy between two 
thermodynamic states of equilibrium.  
The difference in entropy, between two adjacent states is given by the first and second law of 
thermodynamics combined into one equation: 
 
(13.1) T

dAdE
T

dQdSgivesT
dQdSanddAdEdQ   
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dA is the work done by the system from a reversible transition from the one state to the other. 
According to (9.14) 
(13.2)  kT

H  
And consequently: 
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And from (9.15)   m

k
lldaAkdTd

1
  

 
We find combining these two equations 
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Comparing (13.4) with (13.1) and identifying the energy E with H , and dA with 

m

k
lldaA

1
, we get: 

(13.5)  kS   
 
According to (12.14)   Tk 

  1  , and consequently:  
 
(13.6)  TS 

   
 
In the history of thermodynamics, Helmholtz introduced a state variable F = E – TS, called the free 
energy. Using (13.2) it leads to: 
 
(13.7) TSEETSHTkkT
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 We can see, that ψ is actually equal to “the free energy” of Helmholz. 
 
The differentials in the equations refer to differences between canonical distributions. It is therefore 
imperative that the changes are reversible. That is, that both states are in thermodynamic 
equilibrium, the condition for well defined temperature. 
  
 


