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1. Review of analytical mechanics in Lagrange’s formulation

Analytical mechanics is characterized by describing a mechanical system by generalized
coordinates usually denoted: ¢q;, g2, ¢3,...,g,. Differentiating with respect to time is indicated with a
bullet above the variable e.g. ¢ =dg/dt, so that ¢,,q, .4, ,...,q, represents the generalized

velocities. Using the Lagrange approach, the kinetic energy is written as:

T'=7(4,,9::93>-4,919>93 >-9,) >
and the potential energy:

U=U(41:9,91>-9,)
and Lagrange function L is defined as:
(1.1) L=T-U

The Euler-Lagrange equations of motion are

(1.2) —_ S0

The generalized momentum is defined by the equation:

a
"
Example: For a particle with Cartesian coordinates (x, y, z), having the kinetic energy

T=1mv’=1m(3*+3°+2%) and the potential energy U = U(r)

N |—

oL ) oL )
—=mq or —=mi=p,
ox

oq
mq 1s the generalized momentum in the ¢ direction, likewise

g _OL__oUu
* 0q 0Oq

is the generalized force in the ¢ direction.

For a single particle, the Euler—Lagrange equations then become:

a—L—ia—L.zo & —a—U—mq:O < F o =mq,
oq dt g oq !
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This is the familiar Newtonian equation of motion for a particle.

If we differentiate the Lagrangian with respect to time, and if the Lagrangian does not explicitly

. . . .. oL o .
depend on time, ( the partial derivative > =0), the derivative can be written:
t

dL oL oL
1.5 —=)—q,+
(1-3) dt T 0q, @ Za_qqu
According to Lagrange’s equation: oL _d oL _ =0, we can replace oL with ia—L to get:
0q, dtoq, 0q, dt 0g,
dt_zdt(aqu Z@ql _Zdt( j
So

(1.6) E_zdt( j

Subtracting the left side from the last expression we obtain

(1.7) 0 (qu—.—LJ

i

. . OL . . .
Hence we see that the quantity z q; — — L remains constant during the motion of any closed

system. For this reason we identify it with the energy H of the system.

(1.8) H= qu—,—L

We want to establish, that H actually is equal to our usual perception of the concept of energy, as
the sum of kinetic and potential energy: H = T + U, and for that purpose we need to apply Euler’s

theorem for a homogenous function of order ».

According to Euler’s theorem, (which is proven below), we have

oL oT . oL oT
1.9 ] — = ',—:2T, o
() 2 "2y )
. oL . . . .
(1.10) H=Zq,-—.—L(q,~,q,~)=2T(q,~,qi)—(T(q,-,q,-)—U(qi))=T(q,-,q,-)+U(q,-)

oq

i
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This concludes the Lagrangian approach to the total energy of a system, expressed by the Hamilton
function.

1.1 Lemma. Eulers theorem for an homogenous function

We restrict ourselves to prove Eulers theorem for a function of two variables, the generalization to
several variables is straightforward.

A real function f{x,y) is said to be homogenous of order #, if it fulfils the condition:

(1.11) f)=1"f(x,)

If we put x, =#x and y, =ty,then
Sx,) = flx,y)=1t"f(x,y).

Differentiating each of the last two expressions separately with respect to z, gives:

AP . R A 4

dt Cox, ot oy, or  ox, oy
because x; = x, and y; =y for = 1, we find, putting # =1 in the last equation.

N/ A/ AN o/ A o/
(1.12) nf(x,y)—x@)q+yay1 x6x+y6y

Euler’s theorem can easily be generalized to a homogenous function of » variables, if

ftx,,tx,,t0q,.t0,) =t" f(x,,X,,X3,...X,)
Then

c 0
nf(x15x2,x3,-..xn) = Z‘xki
k=1 8xk

Since the kinetic energy is a quadratic form in the velocities ¢,
T=2.2b,44,
i=1 j=1
It is homogenous of order 2, since T(t§) = t*T(§), so according to Euler’s theorem:

n

. orT . oT
ZQka_.zzT or T:%z%{a_.
= 0q, o 04,

One should notice that Euler’s theorem also applies, when the velocities are replaced with the
generalized momenta, since the mass part will cancel in the expression.
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1.2 Hamilton’s equations

The formulation of the laws of mechanics in terms of the Lagrangian, and Lagrange’s equations
derived from it, presupposes that the mechanical state of the system is described by its generalized
coordinates and velocities.

This is not the only description however. The statistical mechanics, it is more advantageous to
attach to a description in terms of generalized coordinates ¢; and generalized momenta p; .

The question therefore arises of the form of the equations of motion corresponding to that
formulation of the laws of mechanics.

The passage from one set of independent variables to another, can be effected by a so called
Legendre’s transformation .

In the present case the transformation is as follows: We write the total differential of the Lagrangian
L =T- U, as a function of generalized coordinates and velocities.

oL oL
1.13 dL =Y —dg. + ) —dg.
(1.13) 25y, ot 2

. . L . L .. .
Since p, = oL by Lagrange’s equation, and p, = 2— by definition of the generalized momentum

(1.13) can also be written

(1.14) dL=>Y" pdq,+ pdq,

Writing the second term in (1.6) as:

(1.15) Zpidq'i = d(zpiq';J_qu‘dpi

Taking the differential to the left hand side, and reversing the signs, we obtain:
(1.16) d(zpiq.i _Lj = _zpidqz' +zqidpi

In (1.8) we identified z g, %— L with the Hamilton function H, that is the energy of the system,

and (1.16) can then be written as a total differential of the Hamilton function H.

(1.17) H :_Zpldq[ +Zéidpi

From this equation immediately follow the Hamiltonian Canonical Equations i.e. the equations of
motion:

(1.18) dq, _ 0H(p.q.a) dp, _ 0H(p,q.a)

dt op, dt 0q,

Where the a’s are parameters belonging to the external forces on the system.
qr 1s the generalized coordinate, and the generalized momenta are defined as:
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0H(q,q) 0T(q,4
(119) p, = @D _Ma-0)
aq, aq,

Example: For a particle with Cartesian coordinates (x, y, z), having the kinetic energy

T= %mv2 =2L(px2 +py2 +p22) , and the potential energy U(x, y, z)
m
We find:
dq, _0H(p,q,a) _ pp dp, __OH(p,q,a) __0oU
dt o, m dt 0q, oq,

Corresponding to the Newtonian equation of motion

2. Foundation of statistical mechanics
Let us consider a system of  particles with the masses: m,,m,,m,,...,m, having the Cartesian

coordinates (x,,y,,z,), and the generalized coordinates: g;, ¢», g3, ... ¢, = g (shorthand notation)
The coordinates may have imposed some constraints, so that n < 3r.

There consist certain relations between the Cartesian and the generalized coordinates:

X; :xi(Q)a Yi :yi(q)9 Z; :Zi(Q)
From which it follows:

. ox, . ) L Oy 0z, .
(2.1) X, =29 Vi —q 2=,
;aqk ’ ;aqk ’ =g, "

The kinetic energy is:

2 2 2
T:Z%mi(fcf+)'/,~2+z',-2)={ ( D vam, —%D +(Z(ZV2%%%D +(Z(Z%mf§iqkj]
] i=1 qy i=1 qy

k=1 i= k=1

=

n

(2.2) T= d;19,4,

j=1 k=1

Where d;, is a positive definite quadratic form, where the coefficients d;; do no depend explicitly

on ¢, ,i=1...n, The generalized momenta are given by:
OH _oT
Dy = =1l.n
an an

From which it follows that the generalized momenta are a linear function of the generalized
velocities.
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(2.3) p=2>d. 4, k=l.n
These linear equations can (in principle) be solved for the g, to give:

q9;,=4,(p-q)
When inserted in (2.2), the kinetic energy can then be expressed as a function of p and g.

T=Tpq

It is a well known fact from classical mechanics, that if the positions and the velocities of a system
of particles are known at a certain time, and forces that act on the particles are also known as a
function of position, then through the equations of motion the position and velocity of the particles
can be prcisely predicted at any later time.

This is called the determinism in classical physics.

We have here assumed that all forces in question, internal forces as well as external forces are
conservative, that is, they can be derived by a potential.

The external forces are thought to be given by some parameters a, so that the potential energy can
be written as.

U :U(ql7q27q37"'7qn5a15a27"'7am)

If d4 denotes the work, that the system forces exert, when the system changes its configuration
from (p,q) to (p+dp, g+dq), then we have:

(2.4) dd = za_quk
k=1 k
Whereas in (1.3)
g U
aq,

Is the generalized force component in the direction of gy .

Similarly
Do
oa,
is the £’th component of the generalized force, which the system performs on the surroundings.
The Hamilton function H, that is, the energy in generalized coordinates, is given by:

4, =

(2.5) H=T(p,q)+U(q,a)

And the equations of motion is written in the canonical form:
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(26) qu — aH(paqat) dpk __aH(paqat)
dt op, dt 0q,

2.7 Example. Uniform circular motion.
2

a
In a uniform circular motion driven by a potential U (7) = —< , the Hamilton function is H = 5; -,
m r
and we therefore get:
qu :aH(paqat):£:V dpk :_aH(paqat):_ﬁ
dt op, m dt oq, r

As we should.

The mechanical state of the system is completely determined, when the values for the 2n
variables (p,q) = (P, Pys P3ses Py>415925955---4,, ) » called the mechanical phase of the system are
known. The phase of the system changes, according to (2.6).

The phase space is a space spanned by the 2n variables. (p,q), and the infinitesimal volume element
is given by:

(28) dV = dpdq = dpldpzdp3 cee dpn . dqldqqu3 e dqn

If we have a subspace €, confined by the points in phase space imposed by a hyper
surface f(Pys Pas> Pyseees Psq1>925930-++» q,) = const , the volume of Q is given by the 2n
dimensional integral.

(2.9) Vo = [[]--] dpdp.dps ---dp, - dq,dg.dq, - dg,

S(P1:P2sP3ssPu»q1592 593 554y )=CONSE

3. Gibb’s ensembles

If we have a system where the thermodynamic state is known, it does not mean that the mechanical
phase is known in detail. If we have two systems having the same Hamilton function being in the
same thermodynamic state, we shall in general find that they do not have the same mechanical
phase.

We may only speak of a probability that the phase of the system is in a certain volume € of phase
space.

It is our aim to define these probabilities more precisely. At a certain time, we consider an ensemble
of huge number of systems with the same Hamilton function, and in the same thermodynamic state.

This means that the thermodynamic state functions are the same, and that the external conditions
also are the same. If we (hypothetically) measure the mechanical phase of all these N systems and
depict their phases as a point in the 2n dimensional phase space, we get the distribution of systems
in phase space. Let the number of points in a volume Q be Ng. Then the probability of finding a
system in Q is:

— 11 NQ
(31) PQ —}IILI;IOT
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That P, actually represent a probability of physical significance, we may not know in advance, and

drawing consequences from this probability function can only be justified by experience, comparing
results belonging to the world of physical realities.

If we let Q shrink into an infinitesimal volume element dV= dpdgq, then we can define P(p,q)dpdq
as the probability of finding the phase of the system in the volume element dV.

The probability of finding the system in a phase space volume Q is then
(3:2) P(Q) = [ [ [..] P(p.q)dpdp.dp, - dp, - dg,dq,dq, -+~ dg,

Where the integrals are extended over the volume Q.

The integral over the total phase space of the probabilities must normalize to one.
(3.3) “-J-.[ P(p,q)dp,dp,dp, ---dp, -dq,dq,dq, ---dq, =1

We shall also define a density function D(p,q). 1f there are a total of N systems in the ensemble,
then the statistical density of systems lying in a volume element dV" around (p,q) is:

D(p,q) = N'P(p,q)

4. Lionville’s theorem

We shall then consider how the systems depicted as point in the 2n phase space will develop in
time.

Let us assume that some system points at ¢ = ¢y occupy a volume € in phase space. At a later time ¢
the same points occupy a volume €. Lionville’s theorem states, that the two volumes are equal.

At 1 the phase space volume element is dV, = dp,,dp,,dps, -~ dp,, - 49,,49,,4q;, - - - dq,,,, and at a
later time, it is dV =dp,dp,dp, ---dp, -dq,dq,dq, --- dq

n

The transformation between the two differentials is given by the functional or Jacoby determinant:

Oopo
@.1) dpdg = det(= 21 ydp,dg,
op,0q,
Or when written out:

dp,dp,dp; ---dp, -dq,dq,dq; ---dq, =
O(P1> P25 D3>es Prsq1592>3559,,)
a(pmapzoap3oa'-'apnOa%oa%oa%oa'-'aqno)

Aap,ydp,adps, - dp,, - dq,0dq5,dq5, -+~ dq .,

Where
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op, op, op, op,
OPyo Pu 4y 04,00
p, ap, P, P,
4.2) O(P1s Pas Pysees Pasdi>92593>59,)  _|OPyg Puo Oy 04,9

O(Pro> Paos Psose++s PaosGhosGa0s G5+ 4no) |9 09, 04, 94,
OPyo Pu 4y 04,00
aq, 9, 0q, 04,
Pyo Po oq,, 04,56

We shall then calculate the two integrals, corresponding to the volumes of phase space that occupy
the system points at 7y and at 7y + ¢, where ot, is a small increment.

To calculate the partial derivatives in the determinant (4.2) we use the canonical equations:

dpk __aH(pant) and qu — aH(paqat)

dt 0q, dt op,

To a first order approximation we have:

q OH (p,q.,t

(4.3) ety + 30 = p, (1) + P s = p, (1) - P40
dt 0q,
or without the explicit time dependence:
q OH (p,q,t
(4.4) Py = Pro +_p5f = Pro ——(p A )5t
dt 0q,
From which we obtain
2 2
.5) Pr_5 OTHPGD G g Pe_s OHPGD
apj aqkapj ﬁqj 8qk8qj

And similarly for the coordinates g;.

d OH(p,q.t
(4.6) gty + &) = g, (1) + 20 5 = g, (1) + 2L 22D

dt ap,
Or without the explicit time dependence:

d 0H (p,q.t
(4.7) G =g+ A st=gq,, - (P.9.) o
dt P
And consequently:
2 2

(4.8) Y o5 THPGD 50 g 5 ARG 5

og, 't 8q,0p, op, op ,0p,



Statistical Mechanics 10

When inserted in the determinant (4.2), we find.

a( 2 9 9eesy no 9 9 9eeey n)
(4.9) Det(p,q) = Pi>:P25 P35> Pn>915925935-59 _
a(plo5p209p30,..~,pn0,q10,q20,Q30,...,qn0)

2 2
WO pgt) o OHpg ) g
op,0q, op,0q,
2 2
op,0q, op,0q,
2
.................. 1= (p.q.0)
p,9q, =
o(ot?) t
2
LOH(paD
0q,0p,
2
........... 1+ 2P0 5
94,9p,
n 2 n 2
1_ a H(p’q,t)&+ 8 H(paqat)5t+0(é~t2):1+0(5t2)
= 0p,0q, o 0q,0p,

ADet(p.q) _ .. O()

ot a0 St

=0 for all values of

This means that the derivative of the determinant limo
AH—>

t, and it therefore follows that it is constant = 1 independent of ¢.

From this, it then follows:
(4.10) Vo =IH~~Idpldpzdp3 ~--dp, -dq,dq,dq; ---dq, =

j”j O(P15 P2 Pyseees Prsbi5925935+9,)
O(P19> P20> P305++> Puo> 91059205930 >+++59n0)

Aap,gap,,dpy; - dp, - Aq,0dq0dq5, -+~ dq,, =

III"'Il'dplodpzodpm P, - dqy0daydgs, - dg,, =V,

As a consequence, all phase points, which lie within € at time #, lie within Q at time ¢, and the
phase space volumes of 0y and Q are the same, according to (4.10).

This on the other hand implies that the density D(p,q,t) of systems points in a phase space volume
is constant independent of time. D(p,q,t) = D(p,q) . In other words:

The density D(p,q) is an integral to the equations of motion.

This can however also be inferred from the differential equation:
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dD oD (oD . oD .
(4.11) —:—+Z —q,+— D,
dt ot 1=\ 0gq, op,

Where stability means that %—lt) =0. Using the Hamilton canonical equations:

qu :aH(p5Q7t) dpk :_aH(p7Q5t)
dt op, dt oq,
(4.11) can be written as:

6—D+i{D,H}k

4.12 =
(4.12) o T

dD _aD 3 (OD 0H D aH]
dt ot 5\ 0q, Op,  Op O,

The Poisson parenthesis {D,H}, is defined by

oD oH 3 oD oH
oq, Op, Op; 04,

If F is a physical expression, that does not explicitly depend on time i.e. aa—D =0, then F' is an
¢

integral to the equations of motion, if the Poisson parenthesis vanish:

dF _ OF OH _OF oH _

(4.13) —
0q, Op,  Op, 9q,

0 < {HF=0

If (4.12) reduces to {H, D} =0, that is, the density is a integral to the equations of motion.
(4.11) can also be written:

(4.14) dD_2D  $-0(D4,) , $-0Dby)
dt o o an k=1 8pk

Also, and not surprisingly, (4.14) has an complete analogy to the continuity equation of an
incompressible fluid with density p, if we replace D with p, and the coordinates ¢, with the
Cartesian coordinates x, y, z, and pv represents then stream density or the flux.

— . . . a
(4.15) G (=P AP A ) _dp  Apv) Opv,) v
Ot ot ox Ox ox ot Ox Ox Ox

One may formally prove that the probability of finding a system in a given position in phase space
is independent of the choice of coordinates, but we shall relax on the proof, since anything else
would be absurd from a physical point of view.

This ends the formal treatise of statistical mechanics, and we shall now turn to its applications to
theoretical thermodynamics.
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6. Application of the statistical mechanics on thermodynamic systems

A stated earlier, even if we know the thermodynamic state completely, and also know the
mechanical conditions (p,g), the position of a system in phase space can not be determined.

The best we can do is to calculate a probability density function P, which turns out to be some
function of (p, ¢), being the probability P(p,q)dpdg of finding the phase of a system within the 2n
dimensional infinitesimal volume dpdg.

Once the Hamilton function is known, we can assign a probability density function P(p,q) to every
ensemble of systems all being in the same thermodynamic state.

We shall focus on systems in thermodynamic equilibrium, that is, with a well defined temperature
T, and our aim is to establish a connection between the thermodynamic variables of state and the
probability density function, which we write.

(6.1) PP, q.T, a)

Where a = a;, a,, ... represent the external conditions on the ensemble of systems.

We shall begin by investigating the properties of a system holding a constant temperature 7

We know already that the density and probability density functions are constant following a system
point (p,q) along its path in phase space.

(62) D(pOaQOato):D(paqat) or P(pOaQOato):P(paQat)

The distribution of systems that correspond to statistical equilibrium, must however also obey
D(p,.q,-t,) =D(p,q,t,), that is, the density must be constant along each curve, and only change

from curve to curve.

A system curve in phase space can theoretically be considered as the intersection of 2n — / hyper
planes, having the equations /;(p,q) =c1 , [(p,q) = ¢2 ,..., Ln.1(p,q) = c2n-1. These equations are then
2n —1 integrals of motion. As one of these integrals, we can always choose the energy H(p, q).

To each set of constants c¢;, ¢, ¢3,... ¢2,.1, corresponds one curve in phase space.

Therefore, any time independent integral i.e. the density D or the density probability P, may be
expressed by these 2n-1 independent integrals.

(63) P= P(Il(p)Q) 5 IZ@)Q) [XRES) [2n—1(p:Q) )
And we can the write (6.1) as:
(64) P= P(Il(p)Q) s IZ@)Q) 9e ey [2n—1(p:Q)> T: a )

The Hamilton function is such an integral, and for other special system, one may indicate other
integrals, but the only integral that is common for all system is the energy H, so we infer that.

(6.5) P(H,T, a)
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7. Determination of the probability density function

To establish an expression for the probability density function, we shall use the simple fact that two
systems 4 and B both in thermodynamic equilibrium at the same temperature 7, subsequently, when
they are brought together, will be in thermodynamic equilibrium at the same temperature, provided
that the interaction between the two systems is very small compared to their energy.

We shall denote all variables belonging to the system 4 with an index A, similar with the system B.
When they are brought together the system variables are without an index.

System A:

Coordinates: g4 = qu;, a2, a3 ,-- Gai - (Number of degrees of freedom /)
Momenta: py = puas, paz, Pa3 ,--- Pl

Parameters: a4y =ay;, aso....

Hamilton function: Hy = Hy(p4, g4, a4)

Probability density: Py= P(Hy, T, a,)

System B:

Coordinates: gz = gz, 482, 983 ,-- 4B - (Number of degrees of freedom m)
Momenta: pp = pp;, P2, PB3 »--- PBm-

Parameters: ag = ag;, ag....

Hamilton function: Hz = Hg(ps, 95, as)

Probability density: Pz= P(Hp, T, ap)

Composite system 4 + B (Number of degrees of freedom n =1+ m)
Coordinates: ¢ = q;, g2, 43 ,... qn -

Momenta: p = p;, p2, p3,... Pn

Parameters: a=ay, ay, ...

Hamilton function: H = H(p, q, a) + U(q4,q95, a4, ag)

Probability density: P=P(H, T, a)

If V45 is the potential of interaction between the two systems, we assume that

VAB << HA and VAB << HB
For this reason, the probability density is by a good approximation equal to P = P(H4 +Hpg, T, a).
The probability of finding the systems 4 and B in the infinitesimal phase space volumes dp4dg and
dppdqp are:
(71) P(HA, T, CZA) dpAqu and P(HB, T, CIB) dequ

Since the two systems are independent of each other, the probability finding 4 in dp4dq4 and B in
dppdqsp is the product of the two probabilities. However since the systems are considered to be in
thermodynamic equilibrium, this probability must also be equal to the probability as finding the
composite system 4 + B in dp4dq.4 dppdqs , having the same thermodynamic state.

(72) P(HA +HB , T, ay ,aB) dpAqu dequ = P(HA , T, aA) dpAqu PB(HB , T, aB) dequ.
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We have assumed that we have the same probability function in phase space referring to different
ensembles. That this is in fact the case can be proven formally, but we relax on the proof, since
otherwise the theory would be in great trouble.

The phase space volume elements cancel, and if we omit all parameters except the energy H,
equation (6.6) is reduced to:

(7.3) P(H, +Hp) = P(H4)- P(Hp)
This is however the functional equation for the exponential function: f{x) = ™.
The equation is usually written: f{ix + y) = fix) f(y).

We therefore stipulate as a working hypothesis, that the probability density function has the general
form:

(7.4) P(H,T,a)=ce™
where A must be a universal function of 7, independent of the system in consideration.

The constant ¢ will be determined by the normalization condition:
(7.5) [[]--] P(H.T.a)dpdp,dp, - dp, - dg,dq,dg, ---dg, =1 <

[[[-[ce™ dpidp.dp, --dp, -dq,dq,dq; ---dq, =1

Since the integral is extended over an infinite space, the exponent AH must necessarily be negative.
We therefore put
74

(7.6) A= —é and c=e’

and the get the following expression for the probability density.

wv—-H

(7.7) P=P(H,T,a)=e * where 0 =0(7) >0

The constant y, can be determined by (7.5) or by the equivalent equation:

H
(7.8) e [[[-[e ?dpdp,dp,--dp, -dg,dg,dq; ---dg,

v
e ? is a function of T and the external parameters (), i.e. a function of the thermodynamic state.
We shall later determine 0 as a function of the temperature, and it will turn out, that 6 = k7, that is,
proportional to the absolute temperature 7.
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The probability distribution (7.7) is called the Gibb’s canonical distribution, and the corresponding
ensemble a canonical ensemble.

Let us consider two systems (1) and (2) both in thermodynamic equilibrium and bring them
together. The probability distribution for the composite system is then:

H H
ﬂ+‘//z 1 2

(7.9) P=P -P=e" *» %~

But this distribution will not correspond to thermodynamic equilibrium if 0; # 0, , because in that
case

(7.10) poti_H

o 0,

can not, even approximately, be an integral to the equation of motion with Hamilton function
H = H; + H, + U. The reason for this is, that the condition for physical variable F to be an integral
to the equation of motion is that the Poisson parenthesis of ' with H vanishes.

oF 6cH oF oH

a4, Op,  Op; 04,
And it is obvious that (7.10) does not comply.

(7.11) (H,F}=

But this is in accordance with experience, (and the second law of thermodynamics) that the
thermodynamic equilibrium is disturbed, when two bodies having different temperatures are
brought together.

Only when 0; = 6, (7.9) will approximately correspond to statistical equilibrium.

If the statistical equilibrium shall be maintained for all systems and all kinds of mutual interaction,
one is lead to the conclusion that the probability density can depend only on the energy of the

system.

8. Mean value of and fluctuations in the energy of the Gibb’s ensemble

From (7.8) it is seen, that a body at a certain temperature does not necessarily have a definite
energy. On the contrary the energy is given by a probability distribution function (7.7).

In the empirical thermodynamic one nevertheless often describes a system as having a certain
internal energy £ = E(T, a), which is a function of the thermodynamic state.

E can not however be identified with H, which is a function of the undefined mechanical state (p,q).
On the other hand the mean value of H, taken over the ensemble may be identified with E.

(8.1) H=]| “---jHerpldpzdm dp, - dq,dq,dq - dq,

As a preperation to evaluate the mean of H, we shall first evaluate the mean of the kinetic energy 7.
(not to confuse with the temperature 7)
According to Euler’s theorem, which applies to any quadratic form in py.
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< oT
(8.2) T :% Py
= Opy
Furthermore
== Uil y-H
j —dpk = fer Hgp =t (Since 2L =92
op, oy Py

This result we shall apply, when calculating the mean value of the kinetic energy.

n y-H
(8.3) T = ZII...ITe ¢ dpdp,dp,---dp, -dqdq,dq, ---dq,
k=1
Using Euler’s theorem
_ n or %
G4 T=AX[[fpl e 7 dodpudp,dp, dadada - d,
k=1 k

Where the limits of integration all go from —o f0 +x.
We first look at the integral with respect to p;, which we do by partial integration.

y—-H v-

- or “H - y-H v-r %
(8.5) prkae ¢ dp, =Lopkd(—9e ¢ )=-0|pe’ +6’I dpk

k

The first term on the right hand side vanishes, and the final integral is equal to 1, by the

normalization condition. When inserted in (8.4), then by definition of the probability distribution

function.
wv—-H

. or vl
(8.6) I_wpkae ? dp,dp,.dpydp, - dg,dq,dg, -+-dq, =0

k

It then follows: T = z.” J-pk—e dp1dpzdp3 -dp, -dqdq,dq,---dq, zgg

= n
8.7 T==60
(8.7) 5

This is the principle of equipartition, also known from the kinetic theory of gasses.

We proceed to calculate the square of the standard deviation of 7.
(8.8) A (T)=(T-T)Y =T>-T

This can be calculated by the same means as (8.4).

o , i
(89) Tz = 7ZIIJ‘T e’ dpldpzdp3 dpn dqldqqu3 dqn
=1

16
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-H

- or *
Tz:zZ” ITpkje dp,dp,dp; ---dp, - dq,dq,dq ---dq,
k=1 k

For simplicity we extract the integral over py:

vt vt
[, e dp, =] Tp,d(e 7 ) (since L =9
ap, &Pe Py

vt 1" v-H
:{—HTpke 0 } +9I—8(6Tpk)e ? dp,

P

The first term vanishes, and we do the integral as we did before, now implying the full sum and
integration over all variables:

vt vt
ej@e 6 dpkzﬁj(pka—T-l—T)e o dp, =
i Py

(8.10) Gjpk—e dpk+9ITe 0 dpk—n9T+9T
P 2
2 N2 _ 2 2 0 = = 72 270 =2 25/
(8.11) o (T)y=(T-T)y =T"-T :nET+t9T:T -=T"-T"==T
n n
And consequently:

(8.12) UZ(T):(T—T)ZZE
: T2 72

This means that the probability, when measuring the kinetic energy of a system, to find a value

. . = ) 12
which deviates more than 7 from the mean is equal to ,/— .
n

For thermodynamic systems the number of particles is usually of the order of Avogadro’s number

17

N;=6,0 10% , so usually the deviations from the mean are immensely small, and this result will not

alter even if we alter the deviation to 1/10,000 of T .

To obtain similar results for the total energy H, we start out from the equation (7.8):

H
e [[[--]e ?dpdpdp,---dp, -dq,dq,dg; ---dq,

Which defines y as a function of the temperature and the external parameters (a).
Taking the differential of this equation gives.

- Y ao)=[[[.fe H—de——Z—daz)dpldpzdps dp, -dgydg;dg - dy,

Multiplying the equation by — GeE , we get:
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v do i
dy =">d0—="[[[..[He * dpdpydp,--dp, - dadq.dg, -+ dg, -

Zdazf []- IZ( —dal)e dpldpzdps ~dp, - dq,dq,dq, ---dgq, <

dt//z—dﬁ Z( —da, =

(8.13) dy =Y 40-3 Gda,  where ]
H =1 aa[

A, 1s the I’th component of the generalized force, on which the system act on the environment.
For simplicity we define m, the probability exponent as:

_ w-H
8.14 B ALY
(8.14) n 7

Then dy =77d49—zzlda,

=1

From which it follows that y is a function of the variable 0 and the external parameters a;.

_ oy — oy
8.15 =— and A4 =——
(8.15) n 20 1 2a,
From

_ oy

=50
and

ﬁ=% < H=y-05
we find
8.15 H=y-0—
(8.15) V=024

From the definition of the mean of H we have,

o vt
(8.16) H = ZJ-I...J.He ¢ dp,dp,dp, ---dp, -dq,dq,dq, --- dq,
k=1

We get by a partial differentiation with respect to 0

H 10
__zj.[ .[He ’ ( v e +5 algjdpldpzdp3"'dpn'dqldqqu3...dq”
k=
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(8.17) H _ v 1ovyg 1

And according to (8.15)

oy
—y -0
Y.
We find
5 oy OH
H? —-0—")H + 0> —
W-0%9 20
1?:172“928—[{ = az(H):ﬁ_EZZgZO_H
00 00
oH
8.18 Y(H)=0"—
(8.18) o’ (H) 20
and by
—w-0%YV
00
it follows
Fag 2 2
(8.19) 6H:61//_81,y_981€:_ 81/;
08 060 00 06 06
So that
o’y
(Hy=-0"—%
o’ (H) 50"
Using
GZ(H):l?za—H
00

and changing the variable from 6 to the kinetic energy 7 = g@ & 0= 2T we get:
n

g OF 4T 200

2
H) = 2o
o) =0 = oT
Arriving at
2 _
(8.20) o) _20H
T noT

OH | : o
Generally rid is of order 1, so we can draw the same conclusions about the fluctuations in the total

o .. OH . : : :
energy as for the kinetic energy. Even if T is very large in some small temperature interval, it

will not change the conclusions about the fluctuations significantly.

Temperature and mechanical phase are complementary in the sense of Niels Bohr.
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The temperature is a statistical concept based on a probability distribution of an ensemble, whereas

the mechanical phase of the individual systems are unknown.

On the other hand, if the mechanical phase is well known, it does not make sense to talk about the
probability of finding the system in that mechanical phase (since it is known), and consequently it

makes no sense to talk about temperature.

9. Fluctuations in the external components of force on an arbitrary system

Differentiation of the equation

jjJ-J- e%dpldpzdp3 ces dpn . dqldqqu3 e dqn =1

With respect to the external parameters a; gives:

0 OH
9.1) | H---I(%——)e " dpddp, - dp, dadada, - dg, =0
/
Integrating the two terms separately gives:
(9.2) 4 = OH _ oy
aal 0Oa,

Now differentiating (9.1) with respect to a; gives:

1 0 OH 0 oH
B I L =, 22 o dpldpzdm ~dp, - dq,dq,dq; -
Oa 8ak 8a oa,

0 Oa, Oa, oa,

Then using (9.2)

0’H oy
Oa,0a, Oa,0a,

(9.3) (4, —A4)(A4,-A4)=0 (I k)y=(1,2...,m)

By differentiating (9.1) with respect to 0, we find in a similar manner.

2 — —
(9.4) A —A)(H-H)=-02Y g% __ 01
24,00 00 2,

10. Determination of 8 as a function of absolute temperature

Let us consider an ideal gas, consisting of n

particles with equal masses m, (since the
extension to a mixture of gasses is trivial).
) They move freely in a container supplied
i with a piston that can be pushed in and out
without friction. The Cartesian coordinates of

B - the i’th particle is (x;, y;,, z;) i =1...n,

And the generalized coordinates and momenta are: ¢; i =1...3nand p; i=1...3n.
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The kinetic energy is:
(10.1) T=im) (X; +y; +2;)
and the associated momenta are:
(Do > Dyi > Poi) = (mXy ,my, ,mz,)

The surroundings are the walls of the container and the piston. Their influences on the system
consist of the impact of the particles with the walls, where the particles are recoiled at a very large
acceleration. This may be represented by a potential for the i’th particle given by:

(10.2) U,=U(x;,y,;,2,a)

Where (a) represent the surroundings. We have assumed that the potential has the same form for all
particles. The total potential U is then the sum of all the potentials U..

There might be an interactive potential between the individual particles, but for an ideal gas, it can
safely be neglected. We assume that the system is in thermodynamic equilibrium having the same
overall temperature. The corresponding probability density is then:

L e
(10.3) P=e =e ¢ (Here T stands for the kinetic energy)

We begin by calculating y as function of 6 and a.

1 o2 .2 n Ce .
Sm (X YO+ ZU (XL 0,2;)

v k=1
(104) e?= J-J-.[J.e 0 mdx,mdy,mdz, - .mdx mdy mdz dx,dydz, --dx,dy,dz,

The integration over x; can be done, if we introduce the variable 7 =, /%x,
(10.5) [ e 2 mas, =\2mo| e dt =~2m0

The same integration is performed over all the other velocity variables.
The potential U, = U (x,,y,,z,,a) =0, except at the walls, where it is extremely large, but it
does not contribute to the integral, so the integration over the coordinates gives:

(10.6) (1] o ey de - [[ [ dvaydz, =v

Where V' is the volume of the container. We thus have according to (10.4):

74 3n

(10.7) e =Q2mo)2 V"

Or when taking the logarithm on both sides
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3
(10.8) v =-nBIn(V(2mmo)?*)

If D is the area of the piston and « is of the distance from the bottom of the cylinder to the piston,
then the volume V' = Da, and according to (10.2)

7--Y
oa,
The force on the piston is
(10.9) d=-W_ _pov _nbo

da ov. v

One may also from (9.3) calculate the square of the standard deviation.

GZ_H_ oy
0’a 0a

(10.10) (A-A)Y =6

Since V' = Da, we get, using (9.4):

A=A U -F)=-0 2V 04 __ 01
0a,00 00 8,
v, 0 1 Do
10.11 YV _p % (npy—=
( ) oa’ 8V( " )V &

Since the kinetic energy 7 does not explicitly depend on the coordinates ¢; ,and U = ZU . we have

i=1
O°H 2 o°U
oa> =<' oa’
_r
And furthermore the factor e ¢ can be put outside both integrals and cancel each other.

j [ j %dxldyl dz,

(] j gdxldyl dz,

(10.12)

Q)Q)

As before the denominator gives V", since we integrate over the volume V of the cylinder, and

U = 0, except at the walls. Concerning the potential U,(x,, y,,z,,a) we shall simply assume, that it,
within a tiny interval & grows to a very large value U, , at the walls of the container, and that the
position of the piston is given by a. We further assume that the direction of a is the direction of the
x-axis, so that the potential U; is a function of (x; — @). It then follows:
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o’U, o, O’U & o,
- =—5 and 2~ 2
Oa Ox; oa~ ‘= Ox;
Therefore we have:
azU ZUk(Xk’yk,Zk) . 82U ZUk(xk,yk,zk)
1013 [[.] ~ve 0 dudydn = Y [[-] —Ste 1 dudy
i=1

We consider now the i’th term in this sum:

ZUk (Xg 55 528)

.[ I J. 8(;? eik:] ¢ dxdy, dz, = V”IIJ...J‘%e?dxidyidzi

The integration over dydz, just gives a factor D, so we get:

U,

(10.14) y D[ a;(ff e 0 dx
xi

U; is vanishing except for a very small interval 8, and we get by a partial integration, omitting the

index i.
2y YW U U 1 U@
j —e ¢ dx:je 0 dU'(x)=le ¢ U'(x) +—jU'(x)e 0 U (x)dx
ox 0

The first term is 0, because U’(x) = 0 outside the tiny interval, and the last integral, does not depend
significantly how the potential grows within the tiny interval. Since we are only interested in the

. . . U
magnitude, we can assume that U(x) grows linearly with x, so that: U'(x) = 70 = constant.

Then we find:

Uo

U _U) v v _Y
éJ-U'(x)e 0 U'(x)dxz%J-U'(x)e 0 dUzé(%jLer gdU:{—e 9} :ﬂ(l—e g)z%

)

0

So according to (10.11), (10.12), (10.13)

2 2
oH_ou =nV"'DU,

nV"'DU, nDU,
oa’>  oa’

Vto 42

Then from (10.9) , (10.10), (10.11)

(10.15) (4-4) _o’(4)_ V6 (nDUO _Dzﬁnj: I(UO a _lj

A° 4> D¢\ Vs 2
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When # is sufficiently large the fluctuations in the force will remain vanishingly small, even if
U
—O>>1 and a>>06

With a reasonable estimate of the parameters involved one finds:

2
(10.15) 02(54) ~107"

In other words, we may identify 4 with the force that gives rise to the pressure that the molecules
exercise on the on the walls of the container.

In other words: 4 = PD, where P is the pressure and D is the area of the piston. We therefore get,

according to (10.9) 4 = nDo , and consequently, since P = D
né
10.16 P=—
(10.16) v

This, we can compare to the equation of state for an ideal gas.

(10.17) PV =nkT or PV =n,RT

k is Boltzmann’s constant k = 1.372 10"° J/K. n,, = " is the mole number, and
A

N.=6.023 10%/mole, is Avogadro’s number. From (10.13) and (10.14) we then see:
(10.18) 0=kT

For the mean value of the energy, we have from (10.15)

3 3
(10.19) H=y- 92—"0’ = —n@ln(V(27zml9)2]— Gln(— V(2mmé)? —no —%%}

(10.20) H =3nkT

So the internal energy is proportional to the absolute temperature, and it is independent of the
external parameters (a), that is, the volume V.

This is in accordance with the experimental results of thermodynamics. Equation (10.20) is
therefore considered one of the major achievements of statistical mechanics.

Furthermore the numerical value of 3 nk is in accordance with that for one-atomic gasses:

(10.21) C,=——=3nk=3n,R
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11. Maxwell’s velocity distribution
The probability of finding a specific molecule (1) within a volume : dQ) = dp, dp, dp,.dx,dy,dz, of

phase space is:

Pldplxdplydplzdxldyldzl =

n 1 n
V=25 —(dpidp dp >—;U,- (x;.2157)

dp, dp,,dp .dxdydz, - [ ...[ e 0 dp,....dz, =

(11.1)

S (dpEdpddpi) = Ui (3,,31020)
m

g —
Ce dplxdplydplzdxldyldz1 =

v —H,

0

e dplxdplydplzdxldyldzl

This is valid for each molecule, that is, every molecule is canonically distributed. So we may drop
the index (1). Crucial for this assertion is that the mutual interaction between the molecules is
vanishing. The constant y; can be determined by:

wi—H,

(11.2) I e ? dp,dp,dp. dxdydz =1

When the number of molecules is very large, we can perceive this as an ensemble of molecules with
temperature 6 = k7. The number of molecules having velocities (v,,v,,v.) in the velocity volume

dv.dv dv. must then be proportional to.

m
—— (i)

(11.3) ce 2T dv.dv dv.

Introducing polar coordinates, where v = \/v} +v; +v. , which gives the volume element

dV =v’dvsin 6d@dp , we may after a trivial integration over the angles, write the probability of
finding a molecule with speed v in the interval dv.

sz

(11.4) P(v)dv = clei AT V2 dy

Where the constant is to be determined by the condition: jP(v)dv =1
0

Wl\)2

(11.5) ¢ j: e #y2dy =1

Introducing the variable:
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2
= o2 2T 2
2kT m

x= lv = dx= ia’v: dv = 2k—de
\ 2kT \ 24T \' m

The integral becomes:

(11.6) CI(Zk—Tj J.we’)‘zxzdx:l
m 0

The integral is evaluated by the method of partial integration, as formulated below.

[f0g )dx = [ f(x)dg(x) = f(x)g(x) [ g(0)df (x)

I:e”‘zxzdx= j: x de™ :—%I:xde"z =

—2x
—l[)ce”‘zr+l we”‘zdx:0+£:£
2 2% 4 4

And (11.6) becomes:

(11.8) cl(

—=1 < =

C, = —
4 Y

And this finally yields the velocity distribution of Maxwell

2kT

ME )

3
2 mv2

(11.9) P(v) = %(%j 2T

A curve representing this distribution is shown below.

26
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The most frequent speed of the molecules, that is, the value of v, where curve has its maximum,
can be found by differentiating the function.
2

Sy =vie

mvz WIV2 sz
_ - _ _ ”
'Wy=e T (——2vW’+e H2y=2ve 2 (———y*+1
S'v) ( AT ) ( AT )
(11.10) =0 o " vin=0 o v= |
2kT m

Inserting values for NV (Nitrogen) My = 28u, T = 300 K (room temperature), Boltzmann’s constant
k =1.381 107 J/K and my =28 - 1.660 107 kg, we get for Viost frequens = 422 m/s.

We may also calculate the mean value of v.

2

4 % _my %1 . 7mv2
(11.11) j vP(v)dv—\/_(szj J. Ve %y = T(%j jo Ve 2T gy?

2
o mv 2kT
As before, we make the substitution: x* = o v ="x" to get
m

% 2 [59) 2 [59) 2
2 e e
T m T m

Integrating by parts

3
© 53 2 0 X 2
.[Oxexdxzj- de” =

0 —2x

_ %([xze)‘z r - 2!: xexzdxj =0+ j: xe ¥ dx = —%[e”‘2 r =

— 4 |2kT ¢» 5 o, 2 |2kT
v:j0 vP(V)dv:ﬁ 7joxe dx_ﬁ o

Using the same values, as we did above, we find: v =476 m/s .

We find:

12. Perrins experiment
Let us consider a liquid, having a certain temperature, in which a large number of particles with

27

mass m and volume v are suspended. The particles are considered microscopic i.e. they can only be

observed in a microscope. Let us consider an arbitrary one of these particles. The only thing we
know is that the particles are in thermodynamic equilibrium with its surroundings.
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The probability of finding a particle in the phase space volume dp.dp,dp. dx dy dz must therefore be

given by the canonical distribution:
w-H

(12.1) Pdp...dz=e " dp._..dz

Since we are only interested in the position of the particle, we first integrate over the momenta.
The spatial distribution is then given by:

_Uxy.2)

(12.2) Bdxdydz=ce * dxdydz

The microscopic particle is only affected by the gravitational potential U(h) = m,gh, where h is the
height over some reference level. v is the volume of the particle and m, is the mass of the particle,
reduced by the buoyancy from the liquid with density p. The potential of a particle in the liquid is:

(123) u(xayaz):(m_vp)gz
The probability of finding a particle within the volume element is then according to (12.2)

()

(12.4) ce " dxdydz

The probability depends only on the vertical coordinate z, so the relative number of particles in the

slice dz, can be written:
_(m-vp)gz _(m-vp)gz

(12.5) NGz)dz=N(@O)e ¥ dz < N(@z)=N@0e

This formula has been experimentally verified by Perrin, who manually counted the number of

particles, using a microscope. In accordance with (12.5) he found an exponential decreasing number

(m-vp)g
kT

Doing separate experiments, he could also estimate the mass and volume of the particles.
Bringing the results together Perrin was also able to obtain a value for Boltzmann’s constant £.
Since k= R/N,4, where R is the gas constant, the experiment also delivered a value for Avogadro’s
number Ny,.

of particle with height, and he was able to determine the logarithmic slope

13. Entropy and Helmholz’s free energy

In the preceding sections, we have acquired the means to calculate the “internal energy” of a system
in thermodynamic equilibrium at a temperature 7, identifying the energy £ with the mean of the
Hamilton function H taken over the canonical ensemble.

We shall now proceed to do the same, concerning the entropy. The entropy is only defined apart
from a constant, since it is only meaningful to talk about differences in entropy between two
thermodynamic states of equilibrium.

The difference in entropy, between two adjacent states is given by the first and second law of
thermodynamics combined into one equation:

dQ _dE+dA
T T

(13.1) dQ=dE+dA and dS:dTQ gives dS =
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dA is the work done by the system from a reversible transition from the one state to the other.
According to (9.14)

_ w-H
13.2 =r
(13.2) T="17
And consequently:
(13.3) dy =dH + kTdmn + kindT
And from (9.15) dy =77kdT - Ada,

k=1

We find combining these two equations

dH + " Ada,
—diy = k=1 -
(13.4) K
dH + z Ada,
_ kd77 — k=1

Comparing (13.4) with (13.1) and identifying the energy E with H , and d4 with z Ada, , we get:
k=1

(13.5) S=—kiy

According to (12.14) 7 = %2—? , and consequently:

oy
13.6 §=-==
(13.6) o7

In the history of thermodynamics, Helmholtz introduced a state variable F' = E — T4, called the free

energy. Using (13.2) it leads to:

v—H
kT

(13.7) = & Tkp=wy-H & -TS=y—-E & w=E-TS

We can see, that y is actually equal to “the free energy” of Helmholz.

The differentials in the equations refer to differences between canonical distributions. It is therefore
imperative that the changes are reversible. That is, that both states are in thermodynamic
equilibrium, the condition for well defined temperature.



