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1. The particle nature of the photon 
In chapter 6, on the photoelectric effect, we realized that light, when observed at the atomic level 
behave as particles having the energy Ephoton = h , where h is Planck’s constant and   is the 
frequency of the light. 
In this section we shall first, based on the special theory of relativity, draw some conclusions 
concerning the momentum and the “mass” and of the photon. 
Since the photons move with the speed of light they must have rest mass zero. This follows from 
the relativistic formula for the mass: 
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Since 22 /1 cv = 0 for the photon, it follows that the rest mass m0 is zero. 
To obtain a formula for the momentum of the photon, we shall use the relativistic formula: 
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The energy of the photon can hereafter be written in various ways. 
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In obtaining the last expression, we have used that: c . Even if the rest mass of the photon is 
zero, one can assign an equivalent mass to the photon when using Einstein’s equivalence between 
energy and mass: E = mc2. 
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We notice that (1.4) comply with the classical formula for the momentum: p = mv. 

2. X-rays 
In 1895 the physicist Roentgen observed that from the anode in a discharge tube was emitted a very 
penetrating radiation. The observation demanded however, that the tube was connected to high 
voltage more than 10 kV.  
What Roentgen actually discovered was that a fluorescent screen placed in the vicinity of the tube 
lit up. The conclusion of Roentgen was that from the anode was emitted a radiation, which was able 
to penetrate the thin glass tube and also paper and other more easy materials, but that the radiation 
was stopped by metals and other hard materials, like thick glass. The radiation is called Roentgen-
radiation, or X-rays, (since the radiation was considered mysterious at that time) 

In the figure (2.1) is schematically shown the basic device of 
the Roentgen tube. In the tube there is high vacuum. The 
electrons are emitted spontaneously from the glow-cathode, 
because of its high temperature.  
Following they are accelerated towards the anode. 
Using an acceleration voltage of 50 kV, the electrons will have a 
kinetic energy of 50 keV, when they hit the anode. 
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In a collision, the electrons will loose most of their kinetic energies at a very short distance (and 
time), which means a violent deceleration.  
Most of the energy of the electrons will be converted to heat in the anode, and some energy will end 
as electromagnetic radiation, according to the Maxwell equations. 
 
Right from the discovery of the X-rays, it was therefore the general opinion that the X-rays were in 
fact electromagnetic radiation. 
The first attempts to determine the wavelength using diffraction in prisms or optical grids showed, 
however, no deflection whatsoever. The conclusion was then that if the Roentgen-radiation was in 
fact electromagnetic radiation, it must have a wavelength less than 1 nm (10-9). 
It is, however, not possible to manufacture optical grids intended for that tiny wavelength, and the 
German physicist Von Laue therefore suggested that instead of optical grids, one could use the 
crystal grids of certain atoms to conduct the interference experiments with X-rays. 
 
An experiment equipped to determine the wavelength in this manner was performed by Friedrich 
and Knipping in 1913. The schematic setup is shown below. 
 
To the left is the X-ray tube. There were used two screens S1 and S2 made of lead to obtain a single 
narrow beam, which was then sent through a thin crystal of ZnS. After the passage of the beam the 
result of the scattering was registered on a photographic record.  
When the photographic record was developed it showed a black spot were the beam had passed the 
crystal without deflection, but moreover and around the central spot there was a regular pattern of 
much weaker spots, which showed that a minor part of the beam had been scattered and by 
interference reinforced in various directions.  
This phenomenon is well known from optical grids. To the left in the figure (2.2) is shown the 
diffraction pattern. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
Doing a complicated analysis of the interference pattern, Von Laue could establish that the X-ray 
radiation had wavelengths in the interval 0.01 – 0.1 nm. 

3. The X-ray spectrum. The Bragg-condition 
The interference pattern that is observed when the X-ray beam passes through a crystal is fairly 
complex to analyze, and shortly after Von Laue’s discoveries, the Englishman W. Bragg, suggested 
that the reflected radiation from the surface of the crystal might be easier to analyze than that of the 
transmitted beam 
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When the X-rays fall into the surface of a crystal they will be scattered by single atoms in the same 
manner as it is the case for an optical reflection grid. The reflected waves will interfere according to 
Huygens principle and by superposition be reinforced in certain directions, dependent of the 
wavelength and the geometry of the crystal. By measuring of the angle of deflection, and with 
knowledge of the structure of the crystal, it is possible to determine the wavelength in somewhat the 
same manner as it is done with the optical grid, but with one significant difference, since the crystal 
consists not only of one, but of multiple layers of “grids”. 
 
For a crystal like NaCl the geometry is particular simple, since it has a cubic crystal structure. 
The crystal consists of a series of parallel planes, where each plane has aligned atoms. 
Such a set of parallel planes are called Bragg planes. The distance between the planes is called the 
grid-separation d. 
 
The incoming wave will be scattered on each of the Bragg planes, and by interference it will result 
in a transmitted wave and a reflected wave. The angle of reflection will comply with that of the law 
of reflection from optics. 
  
The point is, however, that the reflected wave from the different Bragg planes will in general not be 
in phase, and they will therefore quench each other by interference. 
The reflected waves from the Bragg planes will be in phase only at certain specific angles of the 
incoming X-rays, and only at these angles a reflected wave will be observed.  
We shall now derive the condition for having a reflected wave, using the so called Bragg-condition 
that a reflected wave must fulfil. 
 
 
 
 
 
 
 
               
 
 
The figure shows a plane X-ray beam, which falls into a cubic crystal. It appears from the figure 
that the condition that two waves from different Bragg-planes are in phase is that their difference in 
path length ABC is an integral number of wavelengths. If the glancing angle is φ, we find the 
Bragg-condition. 
 
(3.2) |AB|+|BC| = nλ ...3,2,1,sin2  nnd   
 
For a cubic grid, (as for example NaCl), it is relatively simple to find an expression for the grid 
separation d. In the figure above is shown how we perceive how the cubic grid is built. 
The volume V that each molecule occupies can be found from: 
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Where M is the mole mass, ρ is the density and NA is Avogadro’s number. 
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Since both the Na+ ions and the Cl- ions scatter the waves, the volume per scattering atom must be 
half the size of the volume of the molecule. 
 
If the volume of a molecule is put to d3, which is the volume of a cube having the side d, then we 
find the expression for the Bragg separation distance d: 
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The Bragg condition (3.2) has been central for the spectroscopy of X-rays, where also the intensity 
distribution as a function of the wavelength has been determined. 
 
One may apply a setup, schematically shown to the left in figure (3.5) together with some 
characteristic X-ray spectra shown to the right. 
By using two lead screens each with a narrow slit, then a X-ray beam with a well defined direction 
is formed. The beam is then reflected on a swivel crystal. 
The wavelength of the X-rays having a reflection angle φ can then be evaluated using the Bragg-
condition. 
Finally a detector belongs to the X-ray spectroscope that can measure the intensity of the radiation 
which is reflected at an angle φ. 
  
 
 
 
 
 
 
  
 
 
  
 
If you map the intensity as a function of wavelength λ then we may find curves that are shown in 
the figure to the right  
The distribution of the intensity is strongly dependent on the voltage U over the X-ray tube. 
The spectrum is continuous, but for higher anode voltage superimposed by a line spectrum. 
 
In any case the continuous spectrum is sharply confined by a least wavelength λmin .  
If we calculate the corresponding frequency: minmax / c , we will find that there is a direct 

proportionality between max and the acceleration voltage U.  

 
This proportionality can, however, easily be explained from the quantum hypothesis.  
The decelerating electrons will, with their collision with the anode material, emit electromagnetic 
radiation as photons. 
The maximum energy that a photon can obtain, must be equal to the kinetic energy of the incoming 
electron, which corresponds to that the electron looses all its energy in just one collision, which 
gives the condition: 
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The minimum wavelength calculated in (3.7), appears to be in perfect agreement with the results 
from experiments. 
It should be noticed that from a classical calculation, you will find no minimum for the wavelength. 
The continuous spectrum is produced because the electrons loose their energy in several collisions 
with the atoms in the anode. In each collision a photon is emitted (brake radiation), and the emitted 
photons comprise the continuous spectrum. 
 
The main part of the electrons energy goes to heating the anode, which means that an X-ray tube 
can only be active for a short period, unless the anode is cooled. 
  
The overlapping line spectra in the continuous spectrum can be understood from the atom model of 
Bohr, since it may happen that one on the incoming electrons shoots out one of the hard bound 
electron in the K-shell of one of the atoms in the anode material, leaving a vacant hole.  
In a very short time the vacant stationary state in the K-shell will be filled by one of the outer 
electrons, and at the same time the atom will emit a photon with frequency υ, the energy of which 
comply with the frequency condition: outershellK EEh   .  

For heavier metals this jump in energy is so large that the emitted photon is in the X-ray region. 
This characteristic radiation with a definite frequency is seen as the line spectra in the mapping of 
the intensity in figure (3.5). 
 
Notice that only if the acceleration voltage is above 25 kV, the line spectra appear which comply 
with the binding energies of the electrons in the K-shell in the heavier metals.  
Experimentally one also finds that the different anode materials have their own characteristic line 
spectra, representing the energy levels in the particular atom. 
 
X-rays are often characterized by their hardness, since a large acceleration voltage gives “hard” X-
rays, while a lower acceleration voltage gives “soft” X-rays. 
 
X-ray scanning and making X-ray photos are based on the different softness of various materials, 
(bones, flesh, wood, metal). X-ray photos are not ordinary photos, (a real image depicted on some 
photographic screen through a lens), but a shadow image of the parts of the objects that most 
effectively stop the X-rays. Taking two or more X-ray photos from different angles, one is able to 
reconstruct a fracture in a bone, or perhaps identifying the presence of cancer cells. 
 
It is amazing that it was only in the 1960s that one has been aware of the health danger for living 
creatures of X-rays in larger doses. X-rays are dangerous, because they damage or kill living cells, 
that on sight can cause cancer..  
 
But the damaging effect on the human tissue has also had a positive application, since the X-rays 
are used to destroy cancer tissue.  
When fighting the cancer cells with X-rays, it is impossible totally to avoid damaging the healthy 
tissue, so one either rotates the person along an axis with the malign cells placed in the centre of the 
axix, or one rotates the X-ray apparatus around an axis with the malign cells in centre. 
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When I was a boy in the fifties, then in the larger stores selling shoes,  there were installed  X-ray apparatus (believe it 
or not), so from above you could look down and see how your toes fitted in the shoes. That was of course great fun, and 
boys could look in the apparatus for several minutes. They disappeared, however abruptly in the mid fifties, and I have 
never heard anything about this fatal mistake concerning public health, and it has never been mentioned since, and I 
believe one has chosen to “forget” this betrayal from the medical authorities. 

4. The Compton effect 
When passing a non crystalline material an X-ray beam will be scattered on its atoms, and because 
of the random distribution of the atoms, the beam will be scattered in all directions. 
A.H. Compton made in 1932 an experiment, which showed that an initially monochromatic (only 
one wavelength) beam after being scattered an angle φ had two components, where the wavelength 
of the one component was unaltered while the other showed an extension of the wavelength. 
 
This split in wavelength of the scattered beam is called the Compton-effect.  
The spilt of the wavelength Δλ, was furthermore observed to grow systematically with the 
scattering angle φ.  
Below is shown schematically the setup for the experiment to measure the Compton effect along 
with some graphs of the X-ray spectrum at different scattering angles. 
 
  
    
     
 
  
 
  
 
 
  
 
 
 
The Compton effect can not be explained from classical electromagnetism.  
That electromagnetic radiation will be scattered when it passes a transparent material is what could 
be expected, but the observed change in wavelength is inexplicable.  
 
Compton showed, however, that the effect can be explained from the quantum hypothesis.  
Namely if the incoming beam is perceived as consisting of photons, he showed that the extension of 
the wavelength corresponded to the energy that a photon looses with an elastic collision with an 
electron. 
We shall then show how the extension of the wavelength may be determined by such a collision, 
using energy and momentum conservation in a relativistic mechanical derivation. 
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In figure (4.3) is schematically shown a collision where a photon having energy h and momentum 


h

p  hits a resting electron with energy 2
0cm .  

After the collision, the photon has the energy 'h , the momentum 

h

p ' , while the electron has 

the energy 2mc  and momentum pe.  
 
For the photon, the relation between energy and momentum is E = pc.  
 
For the electron we have the relativistic formula for the relation between momentum and energy: 
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The relativistic conservation of energy may be expressed by the equation. 
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By dividing this equation with c and using: 
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For the collision applies conservation of momentum. This can be illustrated by the triangle 
composed by the vectors epandpp


', , as shown in figure (4.3) above, expressing: eppp
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The deflection angle φ is the angle between 'pandp

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We now take the square of the relation: 'pppe
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Inserting in this equation: 22
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To eliminate 22cm we take the square of (4.4). This gives: 
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By subtracting (4.5) from (4.6), we get the equation: 
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Inserting the mass of the electron, we find: 
cm

h

0

=2.4 pm.  

This is referred to as the Compton wavelength for the electron. As you can see from (4.7) then 
 grows with the deflection angle φ , and it has its maximum when φ = π. 

 
According to (4.7) one should expect that all photons would have an extension of wavelength. 
When this is not the case, however, it can be explained because the photon in such cases has had a 
collision with one of the heavily bounded electrons, which act as a collision with the atom as a 
whole, and in the calculation (4.7), we should therefore replace the electron mass by the mass of the 
atom. In that case the Compton wavelength becomes several thousand times less, and the Compton 
effect disappears. 

5. Particle waves. The assumption of de Broglie 
The particle properties of light had already been discovered around 1900 and later experimentally 
established with the photoelectric effect. About 20 years later in 1924 the French physicist de 
Broglie put forward the hypothesis that not only the photons, but all atomic particles exhibited 
particle properties as well as wave properties. 
 
According to this hypothesis should e.g. electrons have particle properties, which in principle could 
be demonstrated by interference experiments.  

For a photon, we have the relation for the momentum: 

h

p   .  

de Broglie then assumed that a similar relation was valid for all atomic particles, such that for a 
particle with momentum p, one could assign a wavelength λ, according to the formula: 
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The wavelength calculated from (5.1) is called the de Broglie wavelength. 
 
5.2 Example 
For an electron, we find the momentum p, and thus the de Broglie wavelength:  
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If we insert h = 6.63 10-34 Js, m = 9.11 10-31 kg and E = 100 eV = 1.6 10-17 J. we will find a de Broglie wavelength         
λ = 1.23 10-10 m. This length corresponds approximately to the double of the Bohr radius, and it is in the same region as 
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X-rays are. It should therefore in principle be possible to determine the de Broglie wavelength for the electrons in the 
same manner as the determination of the wavelengths for X-rays. 
There was also a profund idea behind de Broglie’s introduction of wavelengths for particles. Since according to de 
Broglie should the stationary states (as introduced by Bohr) correspond to standing waves for the electrons.  
In this manner could de Broglie namely in a simple fashion explain Bohr’s quantization condition for the angular 
momentum, according to which: ...3,2,1,  nnL    

In figure (5.3) is illustrated how de Broglie perceived the 
circular movement of the electron around the nucleus as a 
standing circular wave. The possible stationary states should 
then correspond to that the standing wave should fulfil a “border 
condition”.  
As it is seen from the figure, this border condition must be that 
the circumference of the circular path is an integral number of de 
Broglie wavelengths.  
If the radius in the circular orbit is r, it results in the condition.  
 

 
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h
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h
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We see that the hypothesis of the de Broglie wavelength leads the quantization condition of the 
angular momentum initially introduced by Bohr, and for the hydrogen atom it gives the correct 
energy level, when (5.4) is inserted in the classical expression for the energy of the electron. 
(Elementary Physics 3: Chapter 6, section 10) 
 
In spite of this (and other results), there were in the beginning only little confidence in the 
proposition of the particle waves. It was simply too far fetched from the classical conceptions. 
The theory was however confirmed directly, by a famous electron interference experiment 
performed by Davidson and Germer in 1927. 
   

The experimental arrangement is shown in figure (5.5) to the 
left.  
The electrons are emitted from the glow thread F, and are 
accelerated through a voltage of about 100 V.   
The electron beam falls perpendicular in on a Nickel crystal, 
where the electrons are spread in all directions. Using a 
Faraday cup, (able to register the accumulated charge), it is 
possible to measure the intensity of the scattered beam in all 
directions. 
The experiment showed that there were some maxima in 
certain directions. Furthermore Davidson and Germer showed 
that the position of the observed maxima could be predicted 
from the Bragg-condition.  nd sin2 , after inserting the 
de Broglie wavelength for the electron. 
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The de Broglie wavelength for the electron can, however, also 
be determined experimentally by letting the electron beam pass 
through a thin crystal as illustrated in figure (5.6).  
If you place a photographic plate or a fluorescent screen on the 
other side of the crystal, you will observe a series of concentric 
rings. If we think of the crystal as a two dimensional optical 
grid, then the radius in the circles can be calculated from the 
deflecting angle in the same manner as for an ordinary optical 
grid with grid constant d. With the designations in the figure, 
We then find from the optical grid-equation: 
 

(5.7)  
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R
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In (5.7) λ is the wavelength for the electrons determined experimentally from an interference 
experiment.  
The wavelength for the electrons can, however, also be determined from the de Broglie formula, 
when the energy of the electron is known. 
 

  
mE

h

2
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With a comparison with (5.7) an excellent agreement is found, which confirms de Broglie’s theory. 
 
The experimental fact that atomic particles have wave properties, and that electromagnetic waves 
show particle properties has been named the particle–wave duality. 
 
Atomic phenomena have apparently both particle and wave properties. That it is so, was indeed a 
very surprising, (not to say shocking), experience emerging from the many experiments performed 
in the late 1800s.  
In physics, however, it is not the degree of comprehensibility that is decisive for a theory, but rather 
the agreement of theory with data from experiments and the capability of the theory to predict the 
results of new experiments. 
 
Bohr’s theory as well as that of de Broglie had certainly fundamental elements necessary for 
understanding the atomic world, but both theories were incomplete in several areas, and until the 
end of 1920 one lacked a theory that tied together the wave description and the particle description 
in one unified description of the atomic world. 

6. The Heisenberg uncertainty relations 
Her we shall discuss some simple examples of particle waves and derive some essential 
consequences of the particle-wave duality. We initiate by the remark that if we apply the wave 
description of the electrons circular motion around the nucleus, we completely loose any conception 
of its position in the orbit. On the other hand the angular momentum, and thereby the momentum of 
the electron is precisely determined. 
 



  Particle wave duality 11  

It turns out to be a fundamental consequence of the particle–wave duality that if you seek to 
determine the momentum of an atomic particle precisely, then you are referred to the wave 
description, but at the same time you loose completely the significance of the position of the 
particle. 
On the other hand, if we try to determine the position precisely, then we loose completely 
information of its momentum.  
Momentum and position are, using an expression of Bohr, complementary. They can not be 
determined simultaneously with an arbitrary precision. 
 
We shall then discuss this phenomenon a little more closely. 
 
First we consider a superposition of two harmonic (particle) waves having the same amplitude, but 
with slightly different angular frequencies and wave numbers. 
 

(6.1) 

)cos()cos(2

)
22

cos()
22

cos(2

)cos()cos(),(

2
1

2
1

12121212

2211

kxtkxtA

x
kk

tx
kk

tA

xktAxktAtxu



















 

 
In the rewriting of (6.1), we have applied the inverse logarithmic formulas for the addition of two 
cosine functions, and furthermore we have put: 

 1212 , kkk    and )( 122
1   )(, 122

1 kkk  . 

What we see is, that we may perceive the superposition of the two harmonic waves as one wave  

propagating with the phase velocity 
k

vp


 .  

(This expression comes about if we follow a point of constant phase in the second cosine function). 

For instance 
kt

x
vkxt p

  0 . At the same time the wave has a time an position 

dependent amplitude: )cos(2),( 2
1

2
1 kxtAtxA    .  

If we follow a point, where the phase in the amplitude has maximum, that is: 02
1

2
1  kxt , we 

find the so called group velocity: 
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x
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
.  

If  is given as a function of k: )(k  , then we may for small changes identify the group 

velocity with the derivative 
dk

d
. 

Below is sketched what the wave function (6.1) may look like. We have earlier in Elementary 
physics 2, in the section on waves encountered such a wave function in the paragraph on shock 
waves. 
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The dashed line marks the variation of the amplitude. It is this form that propagates with the group 
velocity vg, while the phase in the oscillations propagates with the phase velocity vp. 
 
We see that the propagation of a superposition of two waves is characterized both by a phase- 
velocity and a group velocity. The observed velocity, however, is the group velocity, since this 
means that we follow a point with constant amplitude. If )(k  , we have thus: 
 

(6.3) 
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If the speed of propagation (as it also is the case for sound waves) does not depend on the 
frequency, then kv , where the frequency v is constant, then the phase velocity and group 
velocity are the same. 
 
For a particle we have according to de Broglie: kpandE    .  
The phase and group velocities can therefore be evaluated as: 
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For a non relativistic particle:
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Clearly, when you describe an atomic particle or a beam of such particles by a harmonic wave, then 
the positions of the particles are completely indefinite. On the other hand, the momentums of the 
particles are completely determined. This follows, if we evaluate the momentum from the de 
Broglie relation:  

k
hkh

p 
 2

 , where 

2

k  is the wave number.  

 
The wave number is completely determined for a plane harmonic wave and so is the momentum 
according to the de Broglie relation. 
 
If we want information on the position of a particle, we must describe it by a “pulse”, a so called 
wave packet, which has a confined extent in space. The position of the wave packet is then to be 
identified with the position of the particle.  
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We shall then try, using a superposition of harmonic waves which have wave numbers between k1 
and k2 . If we want a superposition having all wave numbers between k1 and k2 it can be done by 
evaluating the integral.  

(6.4)   
2

1

)cos(),(
k

k

dkkxtAtxu   

 
We then assume that )(k  , and if the interval [k1 , k2] is small, then it is a fair approximation to 

assume that  is a linear function of k in the interval, such that 
dk

d
vg


  is a constant.  

In that case we may evaluate the integral. 
 

(6.5) 

 

)cos(
))(sin(

2

)
22

cos()sin(
2

))sin()(sin(

)sin(),(

2
1

2121
2
1

2
1

1122

2

1

kxt
xt

dk

d

xt
k

k
A

x
kk

tkxt
xt

dk

d
A

xktxkt
xt

dk

d
A

kxt
xt

dk

d
A

txu k
k








































 

As it was the case for the superposition of the two harmonic waves, we perceive (6.5) as a harmonic 
wave with a time dependent amplitude. To understand the variation of the amplitude, we notice that 

the function: 01
sin

 xfor
x

kx
 and that the function essentially is different from zero only in 

the interval   kx .  
 
About the superposition (6.5) we remark that, if  is a linear function of k, we may identify 

k


with the group velocity 
dk

d
vg


 , and  




 )(2
1 xt

k
k .  

The maximum of the amplitude moves with the group velocity, determined by the denominator. 
 

 
dk

d

t

x
vxt

dk

d
g


 0  .  

 
Below is sketched the form of the wave packet at t = 0. 
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To estimate the spatial extend of the wave packet, we shall consider it at the time t = 0.  

At that time the wave packet is essentially only different from zero in the interval  
k

x
k 





 22

  .  

Should we therefore estimate the uncertainty x in the position of a particle described by the wave 

packet above, we must have: 
2

2



 kx

k
x .  

k  may, however, also be perceived as the uncertainty on the wave number of the particle, and 
causes a uncertainty on the momentum of the particle. If we use the de Broglie’s relation: 
 

 kpk
h

p  


.  

Thus we find: 
 
(6.7)   hpxxkkx   22    
 
The last inequality is Heisenberg’s famous uncertainty relation.  
 
The relation expresses that in the particle–wave duality description of an atomic particle it is 
impossible simultaneously to determine the momentum and the position of a particle with unlimited 
accuracy.  
The position and the momentum can only be determined such that the product of the uncertainties 
on the position and momentum do not exceed h, Planck’s constant,(which indeed is a very small 
number, even in an atomic scale). 
 
One might argue that the derivation of this result is based on a very specific wave function, but it 
turns out that (6.7) is quite general, and that it is a fundamental consequence of the particle wave 
duality.  
 
Clearly the description of the motion of a particle using a wave function has some peculiar 
consequences. The question is whether we must completely abandon the conception of a particle 
located at a certain point? 
This paradox, however, has been circumvented by the so called probability interpretation, of 
quantum physical predictions, according to which the absolute square of the (complex) wave 
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function should be interpreted as the probability of finding the atomic particle in a certain volume 
element. 
 
The probability interpretation of the wave mechanics has, however, (also from a more philosophical 
point of view), some conspicuous consequences. 
 
From mechanics we are used to the deterministic point of view, that is, if we know the momentum 
and the position of a particle, and we know the forces that act on the particle, then we can calculate 
the position of the particle at any later time. And this is (in principle) possible with unlimited 
accuracy. But with the probability interpretation this is no longer the case. 
 
In the wave mechanics the position of a particle is given by a (complex) wave function ),( tx ,   

where 2|),(| tx  is the probability of finding the particle in the volume element dV. 
 
In a similar manner, which we shall not substantiate, one may calculate the probability that a 
particle has a momentum in the interval: zyx dpdpdppd 

3 . 

 
In the wave mechanics one is compelled to (at least partly) to abandon the determinism of the 
classical physics, according to which, one may (in principle) with unlimited accuracy predict the 
state of a system once the initial conditions and the acting forces are known.  
 
In the wave mechanics one may at most establish that the system has a certain probability to be 
found at a certain position and having a certain momentum at a given time. 
And what is more intriguing. Two different systems, having the same initial conditions may later be 
“found” in two different states.  
 
This has been named the indeterminism in quantum physics.  
 
This indeterminism has (especially among non-physicists) been the subject of exaggerated 
interpretation and even crude misconception, since they have extrapolated the concept of 
indeterminism to other phenomenon in the macroscopic material world and even to the human 
conscience. 
Some of these philosophical speakers have taken the indeterminism in quantum physiucs as a proof 
that, (even with the sufficient amount of information), one is not able to predict the future, and even 
the development of human life.  
In the extreme they have challenged the concept of a free will. Pursuing this line of thinking into the 
absurd, the conclusion may be that over life on earth is still in the hands of “ The Lord”. 
   
Firstly, we should emphasize that indeterminism is a phenomenon that is bound to atomic particles. 
In quantum statistics one may prove that the positions and the momentums of larger systems, can be 
established with a probability, proportional to the inverse of Avogadro’s number: (6.0 1023). 
 
And for two hundred years we have known that determinism prevails in classical mechanics. 
Miracles do not exist (outside the human mind). 
 
The rational facts are, however, that quantum mechanics is nothing but a precise mathematical 
formalism, by which one may calculate the probabilities of the development of an atomic system in 
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time, and these precise mathematical probabilities excludes exactly the conception of a “higher 
determination”. 
 
“If the Lord determines our future, at least he does it by throwing dices”, as it polemically has been 
stated. Some physicist (including Einstein) has had difficulties in abandoning the principle of 
determinism, which otherwise has rule for over 200 years. 
 
On the other hand no physicist can discard a theory if it gives a correct description of nature, and 
can make correct prediction of nature, no matter how odd it may look like and how far it is from 
everyday experience in the macroscopic world. 
 
Anyway, there is nothing whatsoever in quantum physics which can substantiate a metaphysic or 
religious view of the material world. 
 
We shall end this section by stating the differential equation, which (non relativistic) determine the 
development of a quantum mechanical wave function.  
From this rather complex differential equation one may in principle calculate the wave function for 
an arbitrary atomic system at any later time, once the dynamic potentials are known.  
 
The equation is, (as mentioned earlier), the famous Schroedinger equation.  
It was first published in 1928 by the Austrian physicist K. E. Schroedinger, following the 
theoretical work of Bohr, de Broglie, Heisenberg among others. 
 
The mathematical formalism on which the Schroedinger equation is founded goes far beyond a 
textbook on “Elementary Physics”, so we have no real opportunity to explain, interpret or apply the 
equation, but it is only stated for the sake of completeness. 
 
One flagrant difference to classical physics is that physical quantities: momentum, energy and so on 
are replaced by differential operators, acting on the wave function.  
This formalism has been imported from the Hamiltonian analytical mechanics, (as it is also the case 
with statistical mechanics). 
 
A particle moving in a potential ),( txV  is described by a wave function: ),( tx .  
The probability that a particle is situated in the volume element dV = dxdydz at the time t is 
calculated as 2|),(| tx dV.  

The momentum of the particle at time t can be calculated from the operator 
x

i



  applied on the 

wave function. (i is the complex unit i2=-1).  
 
The wave function is the solution to the Scroedinger equation: 
 

(6.8)   
t

itxV
m 




 


),(
2

2
2

    

 

Where  2  is the Laplace operator 
2

2

2

2

2

2
2

zyx 










  
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The Scroedinger equation may be perceived as the fundamental equation in the non relativistic 
quantum mechanics, analogous to the role of Newton’s 2. law in classical mechanics. 
  
In the relativistic quantum mechanics, on the other hand, applies the Dirac equations, but they are 
considerably more mathematically complex.  
 
  
 
        


