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1. Magnetism 
It is a fairly old experience that two conductors carrying electric currents affect each other with 
forces. However, an electric charge Q at rest is not affected by a force from currents. 
 
The forces with which currents affect each other are called magnetic forces.  
 
We shall here establish, and later justify, that all magnetic forces are caused by electric currents. 
In this connection, electric currents must be understood in a very broad sense as charges in motion. 
 
It is somewhat complicated to write down a general expression for the force between two 
conductors of arbitrary design carrying currents, so we shall initially investigate the forces 
between two infinite long parallel wires carrying the currents I1 and I2.  
   Let the two parallel conductors be placed at a distance 
   r from each other as illustrated in figure (1.1) .  

We define the pull f on the wire as the force per unit 
length. If the length L of the conductor is affected by a 
force F, then the pull is: 

          
L

F
f     

If the currents in the two conductors are I1 and I2 , then 
experiments show that the pull is given by the expression. 

    

(1.2)  
r

II
ff 210

21 2


    

 
The pull is directly proportional to each of the currents, and inversely proportional to the distance 
between them. It should be noticed that the force is an attraction for aligned currents and the force 
is repulsive for opposite directed currents.  
 
The empirical law (1.2) is the foundation of the SI-unit ampere definition for electric currents: 
 
The current one ampere, is the common current that runs in two infinite long and parallel wires, 
which are placed at a distance of one meter from each other, and that acts on each other with a 
force per unit length which is 2.000-7 m. 

0 is a constant of nature and its value is determined by the Ampere definition.  

If we insert I1 = I2 = 1 A , r = 1 m, and f =2.000 10-7 m in (1.2), we find: 
 

(1.3)  270 /10000.2
4

AN



 

 
The constant 0  belongs (like the vacuum permittivity 0 ) to the fundamental constants of nature, 

and 0  it establishes the  “strength” of the magnetic forces in the same manner as 0  establishes 

the  “strength” of the electric forces.  
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0  is called the vacuum permeability, because the fundamental experiment defining the Ampere 

definition, strictly speaking should be performed in vacuum.  
 
The difference, when performing the experiment in air is, however, immensely small, but some 
“magnetic” materials like Iron and Nickel have a permeability, which is several hundred times 
greater than the vacuum permeability. 
 
The Ampere unit is, as you know, one of the five fundamental SI-units, from which all other units 
may be derived. From the Ampere unit is derived the unit 1 Coulomb: As the charge Q that passes 
through a conductor per second, when the current is 1 Ampere. 1 Coulomb = 1 ampere·second. 

2. Magnetic field 
In the same manner as we introduced the electric field E, we shall 
introduce the magnetic induction (or the magnetic field) B from the 
ampere definition.  This is illustrated in figure (2.1). The pull (the force 
per unit length) in the conductor to the left is f, and according to (1.2) 
given by: 

  
r

II
f 10

2


  

 
The pull is proportional to the current I, but the pull divided by I is 
independent of I, and reflects “the magnetic situation” at the place of 
the current in the conductor. In the same manner as we defined the 
electric field as force on a charge divided by that charge, we define the 
magnetic field B as the pull on a current divided by that current. 

 

(2.1) LIBFor
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F
Bor

I

f
B 


   (Definition of magnetic field B) 

 
The conducting wire carrying a current I has the length L, is and is affected by a magnetic force F. 
 
From the defining equation (2.1) it is seen that the SI-unit for magnetic induction is N/(A m). This 
unit is, however, rewritten as follows: 
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m

Wb

m

sV

mC

sJ

mC

smN

Am

Nm

Am

N


22222
 

 
We have in (2.2) defined two new units. 1 Weber = 1 Volt 1 Second.  1 W = 1 V s, and 
1 Tesla = 1 T = 1 Wb/m2. The SI-unit for the magnetic induction is hereafter 1 Tesla = 1 Wb/m2. 
 
Comparing (1.2) with (2.1) it leads to an expression for the magnetic induction B at the distance r 
from a straight line conductor with the current I. (We put I1 = I). 
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Since the magnetic field is derived from a force is has a direction aligned to or opposite to the 
force.  

We may therefore define a magnetic field vector B


. 
For a long straight conductor, the direction of the B-field 
is defined as shown in figure (2.5).   

Let I


  be a vector in the direction of the current and 

let || II


 . r


 is a radially directed vector from the 
conductor to the point where we want to find the B-field.  

The field B


is then given by: 

(2.4) 
2

0

2 r

rI
B


 





 

According to the definition of the cross product, B


is 
perpendicular to I


 as well as r


.  

The direction of B


 is illustrated in the figure (2.5). 
Finding the magnetic induction B, we take the length of 

(2.4) remembering that rI


 :  
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We notice that we regain the expression (2.3). 

 
From the figure, we also see that the magnetic field lines are concentric circles having the 
conductor at its centre. Notice also that in contrast to the electric field lines, the magnetic field 
lines are always closed curves . The reason for this is that there exists no “magnetic charges”. 

3. Biot and Savart’s law 
Up till now we have only given a formula for the magnetic field from an infinite long straight 
conductor. The Frenchmen Biot and Savart delivered a general formula based on their 
experimental work, from which it is (theoretically) possible to establish the magnetic field from 
currents running conductors of arbitrary design. 

In figure (3.1) is shown a conductor carrying the 
current I. And below is shown a formula, which can 
be applied to calculate the contribution to the 

magnetic field Bd


 from the section sd


of the 
conductor, at the point P. 
r


is the position vector to the point P from the small 
conductor element sd


.  

According to Biot and Savart we have: 
 

(3.1)             
3

0
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

 

 
And written in scalar form the formula becomes: 
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(3.2)               
2

0 sin

4 r

Ids
dB





  

In the last equation, φ is the angle between sd


and r


. Notice from the figure that Bd


 has direction 
into the paper, a direction which is symbolized with .  
 
If the field in some point is to be determined from all parts of the conductor, it is done by 
integration along the conductor. (Integration with respect to sd


). 

With the last remark, we have emphasized the vector character of the magnetic field.  
 
This means also that the principle of superposition is valid for the magnetic field. 
 
3.4 Example. The magnetic field from a long straight conductor 

We shall now calculate the B-field from an infinite long straight 
conductor, using Biot and Savart’s law. If we obtain the same result as 
(2.3), it should be taken as a confirmation of Biot and Savart’s law.  
From the figure we can convince ourselves that the contributions to the 
B-field in P from all parts of the conductor have the same direction, 
namely into the paper.  
This follows from the direction of the cross product rsd


  in the 

formula (3.1). So in this case we may replace the vector addition by 
scalar integration. 
If figure (3.4) we have invented an oriented s-axis so that the zero point 
on s is the projection of P on the s axis. Furthermore we have invented 
an oriented angle θ as shown in the figure. The distance from P to the 
conductor is a. According to Biot and Savarts law we have: 
 

  
2

0 sin

4 r

Ids
dB





  

 
To perform the integration, it is necessary to express all the variables by one variable. We therefore express r, sinφ, 
and ds by with the help of the angle θ.  

From the figure one can see that: sinφ = cos θ, and cos
ar  . From s =atan θ, it follows that: 


dads 2cos

 : 

Which gives: 
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We notice that (3.4.a) is in accordance with (2.3) 
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3.5 Example. The magnetic field along the axis of a circular conductor. 
The figure shows a circular conductor with a current I.  
We shall use Biot and Savart’s law to calculate the magnetic field 
at a point lying on the axis through the centre of the circular 
conductor.  

From the figure we see that the contributions 1Bd


 and 2Bd


from 

the two diametrically opposite pieces of the conductor lie 
symmetric with respect to the axis. If the contributions are added 
pair wise, then the sum will be directed along the axis, and the 
vector addition of the contributions can be replaced by scalar 
addition. The sum of the two contributions is therefore. 
 

 sin2|| 121 BBdBd 


 

 
The meaning of R and r can be read from the figure. We shall evaluate the magnetic field at a point having the 
coordinate x.  
The magnetic field is then determined by integrating Biot and Savart’s law for dB on half of the circumference. 
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Inserting 22 xRr   and 
r

R
sin  we find an expression for B(x). 

(3.5b)  
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Especially we may evaluate the magnetic field in the centre of a circular conductor with radius R, by setting x = 0. 
 

(3.5c)  
R

I
xB

2
)( 0  (The magnetic field in the centre of a circular conductor) 

3.6 Exercises 
1) Two long straight wires are placed perpendicular to a plane at the points (-0.50, 0) and (0.50, 0).  
    They both carry a current 5.0 A in the same direction.  
a) Determine the strength and the direction of the magnetic field in the points (0, 0), (0.25, 0), (0, 025) and (0.25, 
0.25).  (All coordinates are in meters).  
b) Answer the same questions above, when one of the two currents is reversed. 
 
2. Two high voltage wires apt for 50 A, are placed in the air at a distance 1.0 m. Calculate the pull (force per meter) 
between the wires, and calculate the force between two such wires, when they are hung in wire masts, when the masts 
are separated by 100 m. 

4. Magnetic Field lines 
As it is the case in electrostatics one may draw field lines to illustrate the magnetic field around 
wires carrying a current.  
The magnetic field lines are defined as curves that overall has the magnetic field vector as its 
tangent vector. 
The crucial difference to electricity is that the magnetic field lines are always closed curves.  
The reason for this is that there do not exists “magnetic charges” (magnetic monopoles), where the 
field lines begin or end.  
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The pattern of the field lines may be investigated by placing small compass needles in vicinity of 
the currents that create the magnetic field. (Later we shall explain the laws that make a compass 
needle align to the magnetic field). 
 
 
 
 
 
 
 
 
 
Above are shown the magnetic field lines from a long straight wire, and the field lines from a coil 
with an iron core. The field lines of the latter are the same as is found from a permanent iron rod 
magnet. 

5. Laplace’ law 
Laplace’ law is a formula for calculating the force, of which a conducting wire is affected, when 
placed in a magnetic field. 

In the figure is shown a conducting wire placed in a 
magnetic field. If the magnetic field is at right angle to the 
wire, then the expression for the force is given by the 
equation (2.1). In the opposite case, we shall designate a 
small straight part of the wire s


 , which is aligned with 

the direction of the current in the wire.  
We assume that B


is constant on the piece of wire. 

 
According to Laplace’ law, the piece of wire will be 

affected by a force F


 given by: 
 

(5.1)         BsIF


  (or in scalar form) sinsBIF   
 
The angle  is the angle between s


  and B


, (the wire and the B-field). One should notice that the 

force F


 is perpendicular to the B-field as well as to the wire. And that F


 = 0, if Bs


|| . 
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5.3 Example. The electric engine 
The discovery of the Laplace force on a conducting wire 
has had an enormous technological impact on the 
industrial development in the Western World.  
More specifically, by the invention of the electric motor. 
Figure (5.2) shows schematically the principles involved 
in a primitive specimen of an electric motor.  
The anchor (here illustrated by only one turn) is placed in 
a magnetic field, and it receives a torque from the Laplace 
forces F1 and F2.  
The current I comes from the sliding contacts, which 
causes the current to switch direction for every half turn 
of the anchor.  
In this manner the anchor will be affected by a torque 
persistently turning it in the same direction.  
The sliding contacts are such a simple but ingenious 
invention, which has brought the electric engine to be a 
part of all households and transportation in the modern 
world. 

The wonderful thing about the electrical engine is that in principle it can also be applied as a 
dynamo generating a current if you turn the anchor around, something that we shall learn more 
about in the section on induction. 

6. Magnetic flux. Amperes law 
Everything we know about static magnetic fields (called 
magnetostatics) can be derived from two fundamental laws.  
We have already discussed Biot and Savart’s law.  
Here we shall introduce Amperes law, but that requires the 
introduction of the concept of magnetic flux. 
Magnetic flux is defined in the same manner as electric flux, 
and the only difference is that the electric field is replaced by 
the magnetic field.  
The magnetic flux through a flat piece with flat normal vector 

A


, where AA ||


,( the area of the flat piece), is defined by:  

(6.2)   ABB


  

 

The formula requires that the field B


is constant over the area A, 
and that the area is flat. 
If the B-field is not constant in strength or direction, or if the 
area is not flat, the surface must be divided into such small 

pieces that B


 can be considered constant and the area Ad


can 
be considered flat. The flux through the entire surface f can then 
be found by integration. 

(6.3)       AdBd


      and        
f

AdB


 

After having defined the concept of magnetic flux, we are then  
able to formulate the two main theorems of magnetostatics. 
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The magnetic field lines are always closed curves. There do not exist (as it is the case of electric 
charges) magnetic “charges” or “monopoles” where the field lines begin and end.  
As a consequence, there must always enter and leave the same number of field lines from a closed 
surface.  
Or said in other words: The magnetic flux through any closed surface is always zero. 
 

(6.4)   0 
f

AdB


 

 
Amperes law: 

The curve integral of the magnetic field along a closed curve is equal to 
μ0 times the signed sum of currents that passes through a surface that 
has the curve as its border curve. 
     

(6.5)   k

curveclosed

IIwhereIsdB 0


 

Amperes law requires that a convention of signs is specified for the 
currents passing the surface. Choosing a positive orientation along the 
closed curve as shown in figure (6.6), then a current should be counted 

Positive, if the orientation of the border curve together with the direction of the current forms a 
right hand screw. In the figure, the positive currents go into the paper, such that I1>0, I2>0 and  
I3<0). 
 
From the two laws (6.4) and (6.5) it is in principle possible to calculate the magnetic field from an 
arbitrary distribution of stationary currents.  
For example: Biot and Savart’s law is a consequence of these two laws. We are not going to derive 
Biot and Savart’s law, however, since it requires that we rewrite the two laws in differential form, 
that is, Maxwell’s third and forth equation. 
Instead we shall apply Amperes law to some simple cases, and show that they deliver the same 
results as Biot and Sawart’s law. 
 
6.7 Example. Application of Amperes law to a long straight conducting wire with a current I. 
 

Since the field lines are closed curves they must for symmetry reasons be 
concentric circle with the wire going through their centres. For the same 
reasons the magnetic field must have the same strength on the periphery of 
the circles. 
To apply Amperes law we integrate along a circle with radius r 
 

IrBIdsBIsdB
ccircle

000 2   


 

(6.7a)  
r

I
B



2

0  (The field from a straight wire) 

 
We notice that it is the same result as we obtained from Biot and Sawart’s law (by using substantially more effort). 
The derivation is made to demonstrate that often it is much easier it is to apply Amperes law, (at least in 
configurations having a large degree of symmetry). 
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6.6 Example. The magnetic field inside a long coil (A solenoid) 
 
 
 
 
 
 
 
 
 
To calculate the B-field inside a (infinite) long coil with many turns, we shall first calculate the B-field from a row of 
conducting wires as shown in figure to the left (6.8a). For reasons of symmetry the field must be directed as illustrated 
in figure (6.8a). We therefore choose a rectangular shaped curve with sides Δs and Δb as shown in the figure. Through 
the curve runs ΔN = n Δs wires, where n is the number of wires per unit length. 

Applying Amperes law to the rectangle, we notice that sdB


  on the vertical sides, so the contribution to the 

integral is zero on these sides and  that sdB


|| on the horizontal pieces, so BdssdB 


there. 

 

nIBsInsBNIsBIsdB k 02
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000 22   
 

 
One should notice that the B-field does not depend on the distance from the (infinite) row of conducting wires. 
(It can be compared with the electric field from an (infinitely big) charged plate) 
We shall then use this result to calculate the magnetic field inside an (infinite) long coil having n turns per unit length. 
This is shown in figure (6.8b).  
What we see is that outside the solenoid the B-field from the lower and upper row of turns will cancel each other, since 
the field is independent of the distance from the row of turns.  
On the other hand, inside the solenoid we have: B = ½μ0 nI+ ½μ0 nI = μ0 nI. 
The result may also be obtained directly from Amperes law, integrating along the curve k2 
 

(6.8b) nIBI
s

N
BNIsBIsdB

k

k 0000
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 
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
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Where n has the same meaning as before: The number of turns per unit length. If a solenoid has N turns and the length 
L, then:  n = N/L. 
 
6.9 Exercise 
Determine, using Amperes law the magnetic field inside a torus (a doughnut shape), having radius R with a circular 
cross section with radius r and having N turns of conducting wire. 

7. Magnetic Dipole. Magnetic Moment. 
Figure (7.1) shows a small rectangular circuit, which is placed in 

a homogenous magnetic field B


. The sides of the rectangle are 
denoted 1s


 , 2s


 , 3s


 , 4s


 . They are all oriented in the direction 

of the current, and they have the lengths a and b, the sides in the 
rectangle. 

The magnetic forces 4321 ,,, FFFF


,which act on the sides of the 

rectangle can be found using Laplace’ law, and in the figure is 
sketched their direction. 

It appears that the forces BsIF


 22  and BsIF


 44 are equal, but opposite to each other, and 
since they lie in the same plane acting on the same circuit they cancel each other.  
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The forces: BsIF


 11  and BsIF


 33 are also equal but opposite to each other, but together 

they will exert a torque on the rectangular circuit, which tends to turn the circuit around an axis 

along 2F


 and 4F


 .  
So we conclude that when a circuit is placed in a magnetic field, the field exert a torque on the 
circuit (even if the resulting force on the circuit is zero), which seeks to turn the circuit into a 
direction at right angle to the magnetic field.  You should notice that when the B-field is 

perpendicular to the circuit then all the forces 4322 ,,, FFFF


all lie in the same plane as the circuit 

and therefore they cancel each other pair wise, so there is no torque on the circuit. 
 

As we have done before, we introduce a flat normal vector A


, where its direction is perpendicular 
to the circuit, and its size: A = ab, is equal to the area of the circuit.  
From the figure we can see that the lever of the torque is sin2

1 a , where   is the same angle as 

the angle between B


 and A


. From this we get:  sinsin 2
1

32
1

1 aFaFH  .  

But since F1 = F3 we find:  sinsin||2sin 2
1

11 IabBaBsIaFH 


.  

To express the torque on vector form, we introduce a new vector: AIM


 , where A


 is the flat 
normal vector and I is the current in the circuit. 
 

AIM


  is defined as the magnetic moment of the circuit, and the circuit is often referred to as 
being a magnetic dipole.  

The direction of M


is the direction from the ”south pole” of the magnetic dipole (the magnet) to its 
”north pole”. 

If we take the direction and size of HB


, and M


in consideration, we may establish the following 
vector equation. 

(7.2)  BMH


      (Where AIM


  is the magnetic moment) 
 

From (7.2) we can see that the torque H


tends to turn the magnetic moment so that M


is aligned 
to B


,( where the torque becomes zero). 

For the sake of argument, we have confined ourselves to analyze a plane rectangular circuit, but 

the results will equally apply for any plane circuit, where I and A


 have the same significance as 
above. 

The magnetic moment is also defined for a solenoid with N turns as: ANIM


 , where the 
direction of the magnetic moment is along the axis of the solenoid. This is so, because a solenoid 
may be perceived as N turns stacked on top of each other. 

Any system, where one can define a magnetic moment vector M


is called a magnetic dipole, and 
one can show that whatever the design is of the circuit that generates the magnetic moment, it will 

be affected by a torque given by (7.2) when placed in a magnetic field B


. 

8. The magnetic moment of an atom. Permanent magnets 
A model of the atom can crudely be described by an extremely small positively charged nucleus 
surrounded by negative electrons. The atom as a whole is neutral, since the charge in the nucleus 
exactly corresponds to the charges of the electrons. 
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The orbit of an electron around the nucleus corresponds to an 
electric current and therefore the atom may be viewed as a small 
magnetic dipole with a magnetic moment.  
To elaborate on this, we shall make a crude calculation of the 
magnitude of the magnetic moment created by the electron in the 
hydrogen atom. 
The electron is assumed to perform a uniform circular motion, with 
a radius equal to the radius a of the atom.  

The frequency in the electrons motion is denoted υ. The current in the electrons circuit is then:       
I = υe, where e is the (numeric) charge of the electron.  
The strength of magnetic moment then becomes: M = IA= υeπa2 
If the electron performs a uniform circular motion, the frequency can be determined by holding 
together the expressions for the centripetal force with the Coulomb force 
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This expression can then be used to calculate the magnetic moment. If we put a = 0.53 10-10 m 
(The Bohr radius) and the mass of the electron me = 9.11 10-31 kg, we find: 
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It appears that this calculation of the magnetic moment cannot be maintained because of some 
atomic physics conditions, among others the spin of the electron, but we have nevertheless hit the 
right magnitude of the magnetic moment. 
 
All atoms have a magnetic moment, but its calculation is normally difficult (or not possible).  
To get an impression of the magnitude of the magnetic moments of the atoms, we mention that a 
circuit passed by an electric current of 1 Ampere and having a circular cross section of 1 m2 has a 
magnetic moment of 1 Am2.  
So although the magnetic moment of an atom as calculated above seems infinitely small, we 
should recall that there are 6.0 1023 atoms in a mole, so if all the magnetic moments point in the 
same direction (they seldom do), a material can in principle have a substantial magnetic moment. 
Furthermore it should be mentioned that some atoms have a much lager magnetic moment than the 
one calculated above. 
 
Normally the atoms, and thereby the magnetic moments, will be randomly orientated and the 
collected magnetic moment will be averaged to zero.  
Therefore a material does not in general have a magnetic moment. 

8.1 Magnetization of materials 
If a material where the atoms have magnetic moments is placed in a magnetic B -field, then the 

field, (according to (7.2) BMH


 ), will seek to align the magnetic moments of the atoms to the 
direction of the B-field, and this will therefore reinforce the B-field. The material as a whole has 
got a magnetic moment. It has become a magnet. 
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 How strong the alignment will be, depends on several circumstances. 
 
1) The strength of the external B-field.   
2) The temperature.  
3) The properties of the atoms in question. 
 
1) It should be obvious that the magnetization increases with the external field, since the torque 

on a magnetic moment according to (7.2) is directly proportional to the B-field. 
2) We know that the mean kinetic energy of an atom  2

2
1 mv  = kT2

3  is proportional to the 

temperature T. At a higher temperature an atom will be subject to collisions with the other 
atoms, and that may bring the magnetic moments out of alignment. 

3) When the magnetic moments of the atoms align with an external magnetic field it will 
reinforce the field, leading to a further alignment. The atomic dipoles themselves create a 
magnetic field, when they are aligned, and this field contributes to keep the alignment of the 
atoms, and in some cases even when the external field is removed the alignment persists.  
What is left is a permanent magnet. Especially the structure of the atoms in Iron and Nickel 
make them suitable for permanent magnets. For this reason the phenomenon of permanent 
magnetization also bear the name ferromagnetism. 
 

Permanent magnets are either designed as bar magnets, where the magnetic field is identical to that 
of a solenoid, or as a horseshoe, where both poles are aligned and therefore can attract magnetic 
materials, mainly iron simultaneously.  
A permanent magnet can, as you know, be demagnetized when heated. There exists a critical 
temperature called the Curie temperature, above which a permanent magnet can not exist.  
This is because the thermal motion becomes too violent to sustain the alignments of the magnetic 
moments of the atoms. The magnetic moments of the atoms will hereafter again have an arbitrary 
orientation with respect to each other.  

 
The fact, (earlier well known by almost every child) that that two “north poles” or two “south 
poles” repel each other, while a “north pole” and a  “south pole” attract each other may easily be 
explained from the fundamental law of attraction and repulsion of electric currents. 
  
In a bar magnet, the dipole currents (when summed up) effectively correspond to the currents in a 
solenoid, and  therefore two bar magnets will attract or repel each other in the same manner as two 
solenoids.  
This is an elementary consequence from the fact that aligned currents attract each other, and 
opposite currents repel each other. It is sought illustrated in the figure below. 
 

               repulsion       attraction  

         
   Figure 8.3          
 



 Magnetism 40  

When a piece of iron is attracted to a magnet it is due to the fact that the field from the magnet 
creates a magnetic moment in the iron with its “north pole” nearest to the magnets “south pole” 
and vice versa. 

9. Magnetic moment. Hysteresis curve for a bar magnet 
As mentioned earlier, the magnetic field from a bar magnet is identical to that of a solenoid.  
This may be used to derive a relation between the magnetic moment M of a bar magnet and the 
magnetic flux BAB   through the magnet, where A is the cross section of the magnet.  
For a solenoid, having length L, cross section A, and N turns, it therefore follows: 
 

 
L

NI
B 0     (According to 6.8b)      and      M = NIA  (According to § 7) 

 
Eliminating the current I from the two equations, we find: 
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Where V = AL is the “volume” of the solenoid, and BAB   is the magnetic flux through the 
solenoid. As we remarked above, the relation (9.1) must also be true for a bar magnet, since the B-
field, the magnetic moment and the geometry are quite analogous to that of a solenoid. 
 
It is relatively easy to do an experimental determination of the magnetic moment of a bar magnet 
(apart from measuring it with an electronic device). From (9.1) one may hereafter find the 
magnetic flux and the B-field of the magnet. 
 
(In the experiment 37, which belong to the Danish edition of this book, the flux is determined by 
letting a magnet be lowered through a coil and plotting the emk as a function of time, which 
confirms the theory). 

The magnetic moment of a bar magnet can be determined 
by letting it perform horizontal harmonic oscillations in the 
magnetic field of the earth. 
As illustrated in the figure, this can be accomplished by 
suspending the magnet horizontally in a needle bearing, 
where it may swing freely. Figure (9.2). 
If the horizontal terrestrial component of the magnetic field 
is B0, then the magnet will be acted by a torque (moment of 

force) 0BMH


  , with the size sin0MBH   .  

For small oscillations we may put  sin , and thus 

0MBH  .  If I is the moment of inertia of the magnet, 

then from the torque equation: 
2

2
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d
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The last equation is the differential equation for a harmonic oscillation, which has the solution: 
 

 )cos(0   t ,  

 where 

(9.4) 
0
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The moment of inertia can be calculated, knowing the mass and the dimensions of a rod, and if the 
horizontal component of the terrestrial magnetic field is known then the magnetic moment can be 
calculated from (9.4) if the period T is measured with a stopwatch. 

9.1 Magnetic permeability 
If an iron core is wrapped with several turns of a conducting 
cobber wire we have a device, which is known as an 
electromagnet. The magnetic field coming from an 
electromagnet is many times stronger than the field 
generated by the coil, without the iron core.  
The strength of the B-field may then be determined from 
Amperes law together with the knowledge of irons ability to 
become magnetized. 

The magnetic field inside the iron core consists of two contributions:  
One contribution comes from the magnetic field from the external electric currents and can be 
evaluated from Amperes law. This field we call H (according to an old tradition, and should not be 
confused with the torque).  
The H-field from the currents will, however, generate a magnetic field S, coming from the 
magnetic moments of the atoms in the iron core, which is aligned with H.  
 
The measured field B should then be calculated as the sum of H and S:  B = H + S. 
If the H-field is calculated from Amperes law, we have according to (6.8b) :  H=μ0nI, where μ0 is 
the permeability of vacuum, n is the number of turns per unit length and I is the current. 
 
In the first approximation, we shall assume that the magnetic field coming from the magnetization 
of the iron core is proportional to the field H generated by the current in the coil. (The hysteresis 
curve illustrated below shows that this is only the correct for moderate currents).  
Within the interval, where the proportionality is approximately true we can therefore write:  
S = κH. Then we may establish an expression for the magnetic B-field that we measure.  
 
(9.5)  B = H + S   and   S = κH    =>    B = (1 + κ)H = (1+ κ) μ0nI = μnI 
 
Which we write as:   B = μrH 
 
What we see is that we get the same expression for the magnetic field as without the iron core,  
if only we substitute μ0 , (the permeability of the vacuum), with μ =μrμ0  (the permeability of iron).  
 
μr is called the relative permeability, and it can be very large (several thousands), and there exist 
alloys with a relative permeability of about a million. For larger currents the relative permeability 
μr depends on the strength of the current. 
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However, there also exist materials (e.g. copper) having a relative permeability less than one.  
We shall not go further into that, but the phenomenon is called diamagnetism. 
 
The relation B = μrH is quite general, and it is not only valid for a coil with an iron core.  
If we want to find the magnetic field in any other material than vacuum, it can in general be 
accomplished in exactly the same manner as in vacuum, (Amperes law, Biot and Savarts law),  
if only we substitute μ0 with μ =μr μ0. 
 
Quite often you will encounter Amperes law written, using the H-field instead of the B-field.  
The reason for this is that on the right side of Amperes law are only included the external currents. 
The B-field may then found  using the relation B = μrH. 

The ability of a material to be magnetized is more precisely 
described by its hysteresis curve. The hysteresis curve is a 
mapping of the magnetic B-field from an electromagnet versus 
the current in the coil. If the starting point is a completely non  
magnetized rod of iron, then the magnetic field will grow as 
shown as the curve (1) in figure (9.6). We can see that for 
moderate currents, we may speak of a proportionality, as given 
by the equation: B = μrH.  
For larger currents the curve will flatten out ending again with a 
seemingly linearity but with a much lower slope than in the 
beginning. The point where the curve becomes linear is the 
point of saturation.  

At the saturation point the iron cannot be further magnetized (at that temperature), and from that 
point the slope of the magnetization curve is the same as for a coil without iron core, but displaced 
upwards by a constant magnetic field corresponding to a completely magnetized iron core. 
 
If we then turn down for the current but continue with a reversed current after the current has 
reached zero, we get the curve (2), and we can se that there remains a B-field even when the 
current is zero. The iron core has been permanently magnetized.  
As the reversed current becomes stronger, the magnetic field will go to zero for subsequently to be 
established in the opposite direction, as a mirror image of the upper curve (2). If the current again 
is reversed after saturation, we have the curve (3). The closed curves (2) plus (3) are called the 
hysteresis curve for the material (iron).  
For most metals (except iron and nickel) the hysteresis curve is a straight line, that is, the same line 
as without a core.  
The hysteresis curve gives an accurate picture of the ability of a material to be magnetized.  
To predict the magnetic field from an electromagnet, it is actually necessary to have knowledge of 
its prehistory, since a permanent magnet can in principle be anywhere on the hysteresis curve. 
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10. Terrestrial Magnetism 
To a crude determination of the direction of (especially the 
terrestrial magnetic field) one uses small permanent magnets, 
the so called magnet needles or compass needles. They are 
suspended on the pin of a needle, so they may move freely 
horizontally or vertically.  

The compass needle has a magnetic moment M


, which is 
aligned with the needle, from the south pole to the north pole of 
the magnet. If the compass needle is placed in a magnetic field 

B


, the compass will align with the field, such that its magnetic 
moment M


points in the same direction as B


. 

This follows from the fact that the torque on a magnetic moment is given by: BMH


 , and 

therefore: BMH


||0   . (The position, where M


 is opposite B


 is not a stable equilibrium). 
 
If you place a compass needle so it can turn freely in the horizontal plane, it will direct itself so it 
points toward the magnetic north pole (the deviation from the direction to the geographic north 
pole is called the variation). From this, one may conclude that the earth is surrounded by a 
magnetic field with its magnetic north pole near the geographic south pole and vice versa. 
 
The terrestrial magnetic field varies somewhat with the geographic position. Before the appearance 
of modern electronic devices apt to determine the terrestrial magnetic field, it could be  
experimentally determined in class, with a device called a tangent boussole, shown in the figure to 
the left. 

The tangent boussole is built from a flat vertical coil, in 
the centre of which is place a compass needle, which can 
turn freely and its position read off on a scale of degrees.  
The magnetic field in the centre of a flat coil with radius 
R, and having N turns is according to (3.5c): 

(10.2) 
R

NI
B

2
0  

We denote the horizontal component of the terrestrial 

magnetic field 0B


 

When there is no current in the coil the compass needle 

will align itself with 0B


.  

 
 
When a current is induced in the coil, creating a magnetic 
field B


at the position of the compass needle, it will align 

to the vector sum of the two magnetic fields.  
The deflection of the needle we denote φ.  
From figure (10.3) we can see that. 

(10.4) 



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tan 0
0

B
B

B

B
  

When the magnetic field B from the coil is calculated 
from (10.2), one may also calculate 0B . 
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10.1 The experiments of H.C. Oersted 
Historically the magnetism from iron has been discovered long before the magnetism created from 
electric currents. It was the Danish physicist H. C. Oersted who was the first to recognize, and 
describe the connection between electric currents and magnetism. 

In the famous, so called Oersted experiment a compass needle 
is placed below a straight conducting wire. 
If a current I is induced in the wire, the needle will be 
deflected. This we understand today, since the compass needle 
having a magnetic moment M


 will be affected by a torque 

BMH


 . From the direction of the vectors, we can see that 
the north pole of the compass needle will swing into the plane 
of the paper.  
This is in accordance with Oersted’s “right hand thumb rule” 
(that all children in Danish schools had to learn by heart until 
the mid sixties): 
 

“Place your right hand with your fingertips in the direction of the current and the palm turned to 
the north pole of the compass needle. Then the north pole will turn in the direction of your thumb”  
 
Which is nothing but an outdated way to indicate the direction of a cross product of two vectors. 
 
Oersted’s experiment demonstrates that a current affects a magnet, but According to Newton’s 3. 
law the reverse must also be the case. This was earlier demonstrated in class rooms with a device 
shown below in figure (10.6) 

The setup of the appliance consists of a horseshoe 
magnet, with a strong magnetic field between the poles. 
The conducting rod between the poles of the magnet is 
designed as a swing, which is suspended in a pair of thin 
conducting wires. 
If a current is sent through the circuit, the rod will be 
affected by a force. 
The strength, and the direction of the magnetic force is 
then given by Laplace’ law.  
The orientation of the conductor is along the current and 
given by the vector s


 , and assuming that the magnetic 

field between the poles to be homogenous, the force on 
the conducting rod given by Laplace’ law (5.1). 

 

   BsIF


   
 

The directions of the three vectors s


 , B


 and F


are indicated in figure (10.6), and one may 
convince oneself, that the direction of the force is in accordance with Oersted’s “little finger rule”. 
 
“Put your right hand with the fingertips in the direction of the current and the palm towards the 
north pole of the magnet. The conductor will then swing towards the direction of your little 
finger”. 
     


