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1. Vector analysis 
Within the classical physics, hydrodynamics is probably one of the areas, which from a 
mathematical point of view, belongs the most complex, but together with electrodynamics also the 
most impressive and rewarding applications of vector analysis. 
 
The theoretical hydrodynamics is fundamentally simple (and mathematically beautiful, if you have 
such inclinations). It is based on Newtonian dynamics, but most of the partial differential equations, 
which are a consequence of the theory, are non linear, and therefore they cannot be solved, except 
in cases of high symmetry.   
 
Thus hydrodynamics is a beautiful rounded theory, which unfortunately only to a modest extend 
may be applied to nature. What the theory cannot explain from first principles is the occurrence of 
turbulence.  
 
When dealing with hydrodynamics in a non phenomenological way it is, however, imperative to 
master parts of the mathematical formalism vector analysis of fields, outlined below 
 
A scalar field is a function of time and position: φ  = φ(x,y,z,t). 
 
A vector field i.e.  v = (vx, vy, vz) consists of three spatial components each being a function of 
position and time. The vector analysis uses the following mathematical symbols: 
 
The gradient of a scalar field φ:               
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Divergence of a vector field v: 
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The Laplace operator:  
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Curl of a vector field: 
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For any vector field the following equations must be valid: 
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This may be “relatively” easy proven, by writing the expressions in coordinates, but we only settle 
for proving the first: 
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 will cancel, and similarly for the other two pairs 

2. The continuity equation  
This equation expresses the fact that the amount of fluid that flows from a closed surface per unit of 
time is equal to the rate of change of the amount of fluid within the closed surface.   
 
If the fluid is incompressible, then the change in the amount of fluid comes from sources or drains 
within the closed surface. 
 
v


 is the velocity vector of a particle element with density ρ. 

The surface area element Ad


 is a vector, which is a outward normal to the surface, having the size 

dA, and Adv


  is then the flux of the liquid. In this case, it is the amount of liquid, which flows 
through the surface area dA per unit of time. The equation of continuity may therefore be written. 
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3. Stokes theorems and Gauss’ lov 
Stokes theorems are valid (under some general conditions) for an arbitrary vector field, but in 
hydrodynamics we state them in terms of the vector field v

 , where v


is the velocity of a particle 
having density ρ.  

3.1 Stokes first theorem 

The flux of a vector field through a closed surface is equal to of the divergence of the vector field 
integrated over the volume within the surface. 
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The left hand integral is, through the continuity equation, equal to 
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Since this equation must be valid for every volume, the two integrands must be equal, so the 
following equation must be valid. 
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In this case the equation represents the continuity equation in differential form. 
 

If ρ is constant in space and time ρ(x,y,z,t)= ρ, then  the equation is reduced to 0


v , which is 
the case of an incompressible liquid. 

3.2 Stoke’s second theorem 

The curve integral of a vector field along a closed curve is equal to the surface integral of the curl of 
any open surface which has the curve as its border curve. 
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It is not entirely uncomplicated to prove Stokes theorems, but a proof “for physicists” may be found 
in The Feynman Lectures II from 1963.  

3.3 Stokes theorems in electrodynamics 
The most well known applications of the theorems of Stoke is probably in electrodynamics. Thus 

the Maxwell equations for the electric and magnetic fields BandE


, when they are written in 
differential form: 
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Having a surface, 


Ad  denote the outward normal to the differential area dA, and


 AdE is the 

electric flux through the surface area


Ad . 
 
Applying Stokes first theorem, we shall now calculate the overall flux through a closed surface. 
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Which is Gauss’ law (Maxwell’s 1. equation on integral form), expressing that the electric flux 
through a closed surface is equal to the signed collected charged within the surface divided by 0 . 

 
In a similar manner, one may apply Stokes second theorem to derive Ampere’s in integral form 
from the Maxwell equations.  
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For static magnetic fields, it then it applies that the curve integral of the B-field along a closed curve 
is equal to the surface integral of the current density through the surface, which has the curve as its 
border curve. 
 
For an infinite conductor with a running current I, one may choose a circular curve with radius r 
with the conductor perpendicular to the circle, through its centre.  
For symmetry reasons the B-field must have the direction along the tangent to the circle, and it must 
have the same value everywhere on the circle. Therefore:  
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From this follows Ampere’s law:  
r
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4. The hydrodynamic equations of motion 

In a fluid it is valid that the force per unit volume is equal the gradient of the pressure p:  pF


  
plus the actions of external forces. Newton’s 2. law for a volume element is thus. 
 

  extFp
dt

vd 

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If there are viscous forces in the fluid, one should add a term Fvisc , but even if it might be possible 
to establish an expression for the viscous force, the are no solution to the resulting differential 
equations except in very special cases.   
 
Hydrodynamics becomes mathematically complex for several reasons, but especially because when 
evaluating the material differential quotient  

dt

vd
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The components of the velocity, apart from being explicitly dependent of time also depend on  x, y, 
z, which are time dependent, because the liquid element moves. 
Namely, because the liquid element, which at time t has the position (x,y,z) it has the position at 
time t + Δt  (x + Δx,  y + Δy, z + Δz) 
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For that reason we must differentiate through x, y, z, to form the material differential quotient. 
Below we show the calculation of dvx/dt in detail, but the same procedure applies for the 
differentiation of vy and vz. 
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This can be written in the symbolic form. 
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If we merge the equations for the three coordinates, we may then write:    
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The cross product of two vectors  banda
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 is defined as:   
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We settle for calculating the x-component of the right hand side, and we do it in a series of steps. 
First we evaluate the curl of v.  
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We then evaluate cross product with v. 
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The equations of motion for a liquid in motion then become: 
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The external force is most frequently the gravity, but in any case if the force is conservative i.e. 

0


F . (This means, according to Stokes law that the integral of F along a closed curve is zero, 
or that the curve integral of F between two points is independent of the path chosen), which again 
means that F can be written as the gradient of some potential function U =U(x,y,z) 
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Hemce the equations of motion become: 
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This equation is usually referred to as Navier Stokes equation 
 
5. Rotational free flow 

If the liquid is overall rotational free, that is, if 0


v , then the first rather troublesome term in 
Navier Stokes equation most conveniently disappears, and we get, when collecting all terms on the 
left side. 
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Furthermore if the flow is laminar, so that the velocity with which the liquid flows is unchanged in 

time, so 0


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v
, we can in fact move the gradient operator outside a parenthesis, which simplifies  

the equation considerably. 
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Resulting in:      
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2
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Finally if the external force is gravity, and the potential energy therefore is U=ρgh, we arrive at  
Bernoulli’s law. 
  constvghp  2

2
1    (along a streamline). 

 
Bernoulli’s law is actually nothing but a formulation of the conservation of energy, as a 
consequence of Newtonian mechanics, and it can relatively easy be derived, without resorting to 
vector analysis. 
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6. Vortices 
We shall base our considerations on the Navier-Stokes equation.  
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We collect all terms which are prefixed by a gradient on the left side, and put the gradient outside a 
parenthesis.  
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Then we define the vorticity,( the vorticity vector), as the curl of the velocity vector. 
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If we then take the curl on both sides, the right side vanishes (because 
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The three equations  
 

0)( 

 


v
t

 


 v           0


v  

 
Are the dynamic equations of motions for vortices, but they are certainly not easily solved! 
 
Although it requires a more formal proof, the equations strongly indicate that, if the vorticity vector  
Ω = 0 at some instant, it will remain zero at all time, and if the vorticity Ω ≠ 0 , then it will remain 
non zero forever 
The classical hydrodynamic equations of motion, may thus describe both laminar flow and turbulent 
flow (vortices), but it cannot explain how or why turbulent flow arises from laminar flow. In fact 
the equations tell us that it can’t.    
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Since almost all flows in water or air even at moderate speeds demonstrates vortices, we are in the 
rather unsatisfactory situation that we have a simple and mathematically beautiful theory, derived 
from first principles, but it has only little to do with the real world. 
 

7. Examples of applying hydrodynamics to the (almost) real world: 
Bernoulli’s law  

constvghp  2
2
1   

 
Can account for many daily life experiences (that you whish you should never experience yourself). 
Most people have seen movies, where a window has been broken in an airplane, and passengers 
near the window hold on to everything to avoid being sucked out of the window. Since there is no 
difference in height between inside and outside Bernoulli’s law becomes: constvp  2

2
1  .  

 
If we put the pressure to 1 atm = 1.013 105 N/m2 inside the plane, and if the plane has a speed of 
800 km/h = 222 m/s and ρair =1.0 kg/m3 , then we may calculate the difference in pressure from the 

inside to the outside. 2
2
10 airairoutsideinside vpp    

atmmNvp airair 25.0/105.2 242
2
1   which is in fact quite significant. 

 
Another scaring example, which you hopefully only have experienced watching a movie, is the 
dragging of everything including people up into a tornado. The huge velocity of the circulating air 
in a tornado makes the pressure very low, and hereby sucking everything up not bolted from the 
ground. 
 

7.1 Emptying of a container from a tub at the bottom: 
    Next we shall consider emptying a container, using a tub at the bottom. 

Assuming that we have a container filled to the height h with liquid, free 
from viscosity, and equipped with a tub at the bottom. 
The liquid has density , and p = p(y) denotes the pressure in the height 
y, measured from the bottom. We the apply Bernoulli’s law to find the 
velocities at different levels. 
 

   p1  + ½ρ v1 
2+ ρ g y1  = p2 + ½ ρ v2 

2 + ρ g y2
 . 

 
We shall omit the (external) pressure, since it does not change in the 
extension of the container. Replacing y with h (the height of the water 
level), we have the equation: 

 
 ½ρ v1 

2+ ρ g h1  =  ½ ρ v2 
2 + ρ g h2 

 
At h = 0 , v = 0, and in the depth h the velocity is v. 
 

Thus Bernoulli’s law gives the same result as a free fall at the surface of the earth. 
 

½ ρ v 2 + ρ g(-h) = 0      ghv 2  
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Where v is the speed, with which the water leaves the tub. 
 
If m = m(t)  is the mass of the water in the container, and if the tub has the cross section D, then the 
continuity equation for the mass dm, that in the time interval dt flows from the tub, gives: 
 

Dv
dt

dm  .  (Minus because m is decreasing) 

 
If the cross section of the container is A, then the mass  m = Ah, so that 
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If we put the two expressions for  
dt

dm
 together we get:  Dv
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expression for the velocity ghv 2 , we find a differential equation for h. 
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This equation can readily be solved by separation of the variables. 
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The container is empty, when h = 0. This happens according to the equation above at the time: 
 

g

h

D

A
t 02
  

 
Having a container with cross section A = 50 x 50 cm2 and h0 =1.0 m, D=2.0 cm2, it gives the 
duration 564 s. 

7.2 Rotating liquid with constant angular speed. 
If a liquid is rotating with constant angular speed ω: the position of a liquid element is 
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We then calculate the vorticity  
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 v .  The x and y components are zero, because the x and y  
components of the velocity do not depend on z, and the z component of the velocity vector does not 
depend on x and y. 
  

)2,0,0()
)(

,,(  
























y

y

x

x

x

z

z

x

z

y

y

z
v  

Thus 


  is constant in magnitude and direction, and 2  (The double of the angular velocity)  
 
Until about twenty years ago one could frequently experience vortices made by cigar smokers as 
smoke rings.  

A smoke ring could cross a library without diluting, beautifully illustrating the constancy of 


 . 
If we have a smoke ring (a torus) with radius R is situated in the x-y plane , and the circular cross 
section has radius r, then a parameter representation for a particle which moves in a uniform 
circular motion, can be written as: 
 

)sin,sin)cos(,cos)cos((),,( trtrRtrRzyx      
 

To evaluate 


 v  directly from the general expression is not worth while, so we restrict 
ourselves to the case where φ = 0, so that  )sin,0),cos((),,( trtrRzyx   

This corresponds to uniform circular motion in the x-z plane  )0,2,0( 


v  
 
If one draws the field lines of Ω, then such lines are closed. The reason for this is that the 

divergence 0)( 


v . This is analogous to the magnetic field lines, which are always 

closed, since  0


B


, because there are no magnetic monopoles (I was taught at the university). 
 
Helmholz has formulated the theorem that the integral of Ω  over a surface perpendicular to Ω is 
constant. The vorticity flux through a surface that follows the movement of the liquid is constant. 
 
A more rigorous proof of this assertion is somewhat complicated, but one may show that 
Helmholtz’ presumption has the conservation of angular momentum as a consequence, which tend 
to straighten the argument 
 
We look at the vorticity in a circular pipe, which follows the flow. Let the cross sections of the pipe 
be A1 and A2 at the times t1 og  t2. 
 
The mass of the liquid (or gas) in a disc that follows the flow must be the same, M1 =  M2 =M.  
Helmholtz assertion is then: 
 
  A1Ω1  =  A2Ω2   
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Multiplying by the mass, and inserting A1 = πr1
2 and  A2 = πr2

2, one finds: Mπr1
2 Ω1  = Mπr2 Ω2 ,  

But Ω is proportional to the angular velocity ω, so each of the two expressions are proportional to 

the moment of inertia I =Mr2 times ω, which is equal to the angular momentum!  

Therefore Helmholtz assertion comply with conservation of angular momentum. 


