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The complex number system

1. The complex number system

We shall begin by showing that the number pairs (q,,a,) where a; and a, are real numbers, when

provided with two compositions for addition and multiplication form an algebra, which is called
the complex numbers.

We shall also write the numbers with one letters such as: a = (aq,,a,), b= (b,,b,), etc.

Some choses to write the number pair as (a, b) , but that makes it awkward to identify it with a
single letter.

By a composition * within a set M, we should understand a mapping (a function) f: M xM — M .
But instead of writing f(a,b) = c, we write : axb =c¢, e.g. a+b=c or a'b=c.

We denote the compositions “addition” and multiplication” for number pairs with the usual
symbols ”+” and > -7, although they do not have the same significance as when used for real
numbers.

Furthermore for all elements a,b,c belonging to M, we shall assume that the commutative and
associative law apply for both compositions:

Commutative law: axb=>b *xq

(1.1)

Associative law: (axb) *c=a*(b *c)
The conditions that a set C form an algebra are the following:

1. Both compositions ”addition” (+) and “multiplication” (") form a group within C.
2. Multiplication is distributive with respect to addition, such that for any three elements a, b,
¢ belonging to C applies:

(1.2) a-(b+c)=a-b+a-c

Firstly we introduce a composition rule for addition, which is just conventionally addition of each
component.

(1.3) a+b=(a,a,)+(b,,b,)=(a,+b,,a,+b,)

Since the calculation rules for the real numbers apply for each of the components, this composition
is both commutative and associative.

The neutral element is obviously (0,0), and the opposite element to a = (a,,a,) is (-a,,—a,), as
we also write as —a =—(a,,a,).
The difference between two elements is: a—-b=(a,,a,)—(b,,b,)=(a, —b,,a, —b,)

So while the expression for addition is the same as for the real numbers, the composition for
multiplication is not a*b = (a,,a,)-(b,,b,) =(a,-b,,a, -b,), but rather:
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(L.4) a-b=(a,,a,)(b,b,)=(ab —a,b,,ab, +a,b)

This composition is obviously commutative, but before we establish the associative and the
distributive law, we shall introduce the imaginary unit i. We therefore calculate:

(1.4) (0,1)-(0,1) =(=1,0) or (0,1)* =(-1,0)

The complex number (0,1) is denoted i, and it appears that i* = -1.
Since every complex number (a,,a,) may be written as (1,0)a, +(0,1)a, = q, +ia, , then from now
on, we shall drop the notation z = (x, y), and instead write:

(1.5) z=x+1iy
For an arbitrary complex number.

Calculating the product of two complex numbers it is done in the same manner as for real
numbers, as you just separate the real part from the imaginary part, remembering that i* = -1.

a-b=(a,+ia,) (b +ib,) = ab, +iab, +ia,b, +i’a,b, =

(1.6)
ab, —a,b, +i(ab, +a,b,)

This calculation rule is recognized as the composition, we already have introduced for
multiplication of complex numbers. (since otherwise...)

It is straightforward but a bit lengthy to show the associative law for multiplication, so we shall
settle for showing that multiplication of complex numbers is distributive with respect to addition.

cla+b)=ca+cb <
(¢, +ic,)a, +b, +i(a, +b,))=(c, +ic,)a, +ia,)+(c, +ic,)(b, +ib,)

Evaluating the last expression gives, however:

qa, +ica, +ic,a, —c,a, +cb, +icb, +ic,b, —c,b, =
¢(a, +b)+ic,(a,+b)+ic/(a, +b,)+ic,i(a, +b,)=
(¢, +icy)(a, + b, +i(a, +b,))

The complex conjugate to a complex number a =q, +ia, is defined as a =q, —ia, .
We notice that:
(1.7) aa =|a’=(a, +ia,)(a, —ia,) = al2 + az2

Where |al=+/a,” +a,” is denoted the modulus, the numeric or absolute value of a complex
number.
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There apply some minor rules about the complex conjugate to a complex number.

(1.8) a+b=a+b
(1.8) a-b=a - b
ab=ab

We settle for showing the last one:

a-b=(a, —ia,)(b, —ib,) = ab, — a,b, —i(a,b, + a,b,)

ab = (a, +ia,)(b, +ib,) =a,b, — a,b, +i(ab, + a,b,) = a,b, —a,b, —i(a,b, + a,b,)

The inverse number to a non zero complex number « is:

(1.9) l_a _a-iag

There is a tradition of never writing a complex number in the denominator, and always write a
complex number in the form: a +ib , but this may always be accomplished by multiplying with the
complex conjugate to the denominator in both the numerator and the denominator.

The equation: ax = b, where a and b are complex numbers have the solution:

(1.10) x=2_8b_(aZia)b tib) _ab tab, +ilab, ~ab)
a aa a, +a, a, +a,
1.1 de Moivre’s formula. The exponential and the trigonometric functions

The complex number a = a, +ia, = (a,,a,) may be represented as a point in an ordinary
coordinate system. Where » = |OA| is the distance from O to the point A.

(1.11) r=|0A|= al=+a’ +a,

Then a =(a,,a,) can be written as:

-

.

\ a=|al(cosv,sinv)=r (cosv+isiny)

A(a,,az)
la]
B / Where v is a direction angle for OA.

Fig. 7 i _ -
0] X

If: b=|b|(cosu,sinu)=r,(cosu +isinu)
is another complex number, then we may form the product of the two numbers:

a-b=rr(cosv+isinv)(cosu +isinu)=r,r(cosu cosv—sinusinv+i(cosusinv+sinu cosv))

If we recall the addition formulas for trigonometric numbers:
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cos(u-v) = cos u *cos v + sin ¢ *sin v
cos(u+v) = cos u *cos v - sin u *sin v
sin(u-v) = sin # *cos v — €OS u *Sin v

sin(u+v) = sin u *cos v + cos u *sin v
We can then see that:

(1.13) a-b=rr(cos(u+v)+isin(u+v)
Notably, if a = b then a’> =r*(cos2v+isin2v)

And by continuing the argumnent, we arrive at de Moivre’s famous formula:
(1.14) a" =r"(cosnv+isinnvy)

Also from de Moivres formula follows Eulers formula, which is one of the most important
formulas in mathematics. We define:

(1-15) e” =cosy+isiny
And subsequently:

=e'e” =e"(cosy+isiny)

z X+iy

e =e€

However, the condition for this definition to make sense is that the complex exponential function
must obey its functional equation.

eZl eZZ — eZ] +Zz

(1 16) exl‘*'iylexz +yy elle™ e’)’l vy _ el ei(Y1+YZ)

But this property we have already shown above by using the additional formulas, but with other
variable names, that is:
a=r,(cosv+isinv) and b=r,(cosu +isinu) =
a-b=r,r(cos(u+v)+isin(u+v)
Or

Xy +iy;

e =e""™M =" (cosy, +isiny,) and e =e""" =e"(cosy, +isiny,) =

e'e” =e"e™(cosy, +isiny,)(cosy, +isiny,) =

e (cos(y, + y,) +isin(y, +y,) = gl 2 g
From (1.15), it follows immediately:
(1.17) cosx=1(e"+e ™) and sinx=L(e"—e™)

The trigonometric functions of a complex variable are therefore defined.
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(1.18) cosz=1(e"+e™”) and sinz=L(e"—e")
The definitions of the hyperbolic functions are, on the other hand, the same.
(1.19) coshz=1(e"+e*) and sinhz=1(e’—e”)
From which we see that:

(1.20) coshz=cosiz and isinhz=siniz

All the calculation rules and rules for differentiation of the trigonometric and hyperbolic functions
can, however, be transferred directly to their complex analogous, without change.

1.21 Example. Harmonic oscillations.
In theoretical physics there are numerous differential equations, which lead to harmonic oscillations, that is, a solution
of the general form.

x = Acos(wt + @)

To solve such equations it is often advantageous to use the complex exponential function because differentiation
means multiplying with a (complex) constant.

Evidently only the real part can be the solution, but that offers no problem as long as the differential equations are
linear.

If we look at the generic differential equation for a mass m suspended in a spring having spring constant .

(1.22) dx__k x
' dar’
If we try with the solution
x_Aeia)t
. k | k k m
We get: —0*4e" =—— 4" = @w'=— = w=,|— = T=2x|—
m m m k

For this simple equation the advantages are moderate, since it can be easily solved by guessing the solution
x = Acos(wt + @).
Otherwise, when it is related to the equation for a damped harmonic oscillation. Such an equation can be reduced to:

d’x dx

(1.23) —+b—+c-x=0 where 5>0 and ¢>0
dt dt

Solving this equation by traditional methods is by no means trivial.

So we try with a complex exponential of the form: x = e” , where z in general is a complex number.
It then follows:
2
dx zt d X 2, ez~t

—=z-e and —=z
dt dt

Inserting in (1.23) and reducing by e” we get a quadratic equation.
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Z24b-z+c¢=0

The discriminator is: d =b* —4-¢. Ifd> 0, then the quadratic equation has two real solutions.

b b*—4.¢ b b*—4-c

On the other hand if d < 0 , then the quadratic equation has no real solution, but rather two complex solutions.

b Nd-c-b* b N4-c-b

(1.21) z=——+—— V Zz=———]——+
2 2 2 2
N4-c—-b )
If we put @ = ——— then we get from the first equation:

. b
i

b
—t+iot -t .
x=Ae" =Ae?* = Ae ? (coswt+isinwr)

The physical solution is the real part, where we have added an initial phase ¢, such that we have to integration
constants 4 and ¢, as we should have..

b
(1.22) x=de ? cos(wt + @)

From obvious reasons (1.22) is called to solution for the damped harmonic oscillation.

2. Equations with complex numbers. The binome equation
We shall demonstrate the general solution to the equation:

(2.1) Z"=a < |z|"(cosnx+isinnx)=|al|(cosv+isinv)
Where, z =|z|(cosx +isin x) and a are complex numbers

The direction angles for a are: v+ p2z, p=0,1,2... ,which immediately gives:
|z|=4%|a|l and mx=v,v+2z,v+4r,v+(n-1)27r <
zetfla] and  x="4pZE. p=012..(n-1)

n n

So the complete solution is:
v 2z, ..V 2r

(2.2) | z|=4/| a|(cos(—+ p—) +isin(—+ p—)), p=0,1,2....,(n—1)
n n n n

The equation: z" = a therefore has (for nonzero a ) always n solutions.



The complex number system

2.1 The general solution to the quadratic equation, having real coefficients
Within the body of the real numbers the quadratic equation:

(2.3) ax’* +bx+c=0

Has none, one or two solution, depending on whether d <0, d =0 or d > 0, where d =b> — 4ac is
the discriminator

We shall then show, that within the body of the complex numbers, that the quadratic equation:
(2.4) az’ +bz+c=0
Always has at least one and at most two solution.

For non zero a, we shall do the same rewriting, as we did for the real quadratic equation, initiated
by dividing by a.

a a
2 2
(z+ij —b—2+£:0
2a 4a a

If d >0, the equation has one or two solutions, which are determined by the solution formula.

b+
z = b;—ﬁ , where d =b*—-4ac
a

In the case d < 0, there are two complex solutions.

( bjz d ( b) +i—d
zZ+— :F = Z = =
a

2a

b4
z = % ,hvor d =b*—4ac
a

If a, b, c are complex numbers it is not possible to give a general solutions formula.
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The rewriting

2
az* +bz+c=0 < (Z—’_ij:i
2a

Is still valid, however, but the equation must in each case be solved as a binome equation.

3. The fundamental theorem of algebra.
We consider a n-degree complex polynomial :

(3.1) P(z)=z"+a, 2" +a, 2" +..+az+a,

Where n =1, 2..., and the coefficients ao, ai, ay,...a,.; are complex numbers , where at least one is
non zero. The fundamental theorem of algebra then states:

| (3.2) A n-degree polynomial has exactly » roots.

This theorem is not entirely simple to prove, but we shall conduct an adapted “proof”, by first
showing that a polynomial of degree n > 0 always has at least 1 root.
We remind you that for any complex number.

a=(a,a)= a+ia

la| =ya," +a,’

Which is also the distance |OA|, where A= (a1, a3) .

Where

Correspondingly for two complex numbers a = (a;, a;) and b = (by, by), representing two points
A and B, in a coordinate system

MBI = la—bl= (@ ~b)" +(a,~b,)’
Is equal to the distance |[4B)|.

If ap = 0 then the polynomial has the root z = 0, so we shall assume that a, #0.

If z = x +iy, then the equation | z |= r displays a circle having centre in O in the complex plane
since: |z|=r & x*+y*=r’

As z passes through a circle C, with radius 7, then P(z) will run through a curve Cp.

Our aim is to demonstrate that P(z) has a root, by showing that there must be a value of 7, where
Cp passes through O. Let M be the number:

M= max{l, a

a0|}

n-1ls|@pals--s
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Then we have for |z| > 1:

|P(z)-z"|=|a, 2" +a,,z" " +..+az+a,|<
—1 -2

la, , [|z]" +la, L z]"" +.+]a | z]+]a, | <
Mz +|z|"? +. 4| z|+D) < Mn |z

Thus, we get:

(3.3) |z|>1 = |P(z)—z" |[<Mn|z|""

In quite a similar manner we have:

(3.4) 1z|<1 = | P(z)—a,|< Mn|z]|

Now we let z run through a circle, having centre O and radius R, where R > 2Mn.
Inserting |z| = R in the first of the inequalities (3.3), we get:

(3.5) |z|>1 = |P(z)-z"|<Mn|z|"'<LRR"" =1 R"

As z runs through a circle with radius R once, then " will run n times through a circle with R".
This follows, since: z= R " implies z" = R"e™ .

In the figure is illustrated an example of the be

' AR behaviour of P(z), when z runs through a circle
with radius R".
The inequality (3,3) shows that the distance
ol between z” and P(z) is less than L R", as long as
| z| > 1. Therefore the curve that P(z) follows , will

5 » | enclose the point O. On the other hand if :
zl<1 A |zj<l%l
2Mn
it follows from the inequality (3.4):
Fig. 13 |z|<l = |P(z)—a,|<Mn|z| ,that

(3.6) | P(2)=a, |<5a

P(z) will therefore, for small radii |z — ag| =7, lie on a curve, which does not enclose O.

The curve that P(z) describes in the two limits, corresponding to the inequalities (3.3) and (3.4)
must somewhere (because of continuity) in between have passed through O , so there must be at
least one value, where P(z) =0.

When we have proved that any polynomial of degree » > 0 has at least one root, the fundamental
theorem of algebra follows from the theorems we know from polynomials of a real variable,

which, without restriction, can be taken over by the complex polynomials.

1. If a is a root in a polynomial P(z) < P(a)=0, then P(z) is divisible by (z — a).
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(3.7) P(z)=(z-a)Q(z)
2. If P(z) has degree n > 0, then QO(z) has degree n-1.

Since we have already shown that any polynomial with degree » > 0 has at least one root a, we
may write:

3.8) P(z)=(z-)0,,(2)

Where the degree of Q,.1(z) is n — 1. If the degree of Q,.1(z) is greater than 0 then O ,,.; (z) has at
least one root, such that:

0,.2)=(z-2,)0,,(2)
And thus:
P(z)=(z-a))(z-,)0,,(2)

This line of argument can be continued until the degree of the O-polynomial is 0. We may then
write P(z) as:

(3.9) P(z)=(z-a)(z-a,)..(z~,)0,
Where (), is a constant.

From the equation (3.9) we conclude (from the zero-rule) that a polynomial of degree n has the n
roots ay, dy,...,0, , and that it can have no other roots, which is the contents of :

The fundamental theorem of algebra.
As it is the case for real polynomials the roots in first and second degree polynomials are easily

found, but somewhat more complicated for 3. degree polynomials, and as you probably know,
there are no general methods to determine the roots in polynomials having degree larger than 4.



