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1. The complex number system 
We shall begin by showing that the number pairs ),( 21 aa  where a1 and a2 are real numbers, when 
provided with two compositions for addition and multiplication form an algebra, which is called 
the complex numbers. 
 
We shall also write the numbers with one letters such as: a = ),( 21 aa , b = ),( 21 bb , etc.  
Some choses to write the number pair as (a, b) , but that makes it awkward to identify it with a 
single letter.  
 
By a composition   within a set M, we should understand a mapping (a function) f: MMM  . 
But instead of writing f(a,b) = c, we write : a b = c,   e.g.   a + b = c  or  a·b = c. 
 
We denote the compositions  ”addition” and ”multiplication” for number pairs with the usual 
symbols ”+” and ” ·”, although they do not have the same significance as when used for real 
numbers.  
 
Furthermore for all elements a,b,c belonging to M, we shall assume that the commutative and 
associative law apply for both compositions: 
 

Commutative law:           a b = b  a 
(1.1) 

Associative law:              (a b)  c =a (b  c) 
 

The conditions that a set C form an algebra are the following: 
 

1. Both compositions ”addition” (+) and ”multiplication” (.) form a group within C. 
2. Multiplication is distributive with respect to addition, such that for any three elements a, b, 

c belonging to C applies: 
  

(1.2)  cabacba  )(  
 

Firstly we introduce a composition rule for addition, which is just conventionally addition of each 
component. 
  
(1.3)  ),(),(),( 22112121 bababbaaba   
 
Since the calculation rules for the real numbers apply for each of the components, this composition 
is both commutative and associative. 
The neutral element is obviously )0,0( , and the opposite element to ),( 21 aaa   is ),( 21 aa  , as 

we also write as ),( 21 aaa  . 

The difference between two elements is:  ),(),(),( 22112121 bababbaaba   
 
So while the expression for addition is the same as for the real numbers, the composition for 
multiplication is not a·b = ),(),( 2121 bbaa   = ),( 2211 baba  , but rather: 
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(1.4)  ),(),(),( 122122112121 bababababbaaba   
 
This composition is obviously commutative, but before we establish the associative and the 
distributive law, we shall introduce the imaginary unit i. We therefore calculate: 
 
(1.4)  )0,1()1,0()1,0(   or  )0,1()1,0( 2   
 
The complex number )1,0( is denoted i, and it appears that i2 = -1. 

Since every complex number ),( 21 aa  may be written as 2121 )1,0()0,1( iaaaa  , then from now 
on, we shall drop the notation z =  (x , y) , and instead write: 
 
(1.5)   iyxz   
 
For an arbitrary complex number. 
 
Calculating the product of two complex numbers it is done in the same manner as for real 
numbers, as you just separate the real part from the imaginary part, remembering that i2 = -1. 
 

(1.6) 
)(

)()(

12212211

22
2

1221112121

babaibaba

baibiabiabaibbiaaba




 

 
This calculation rule is recognized as the composition, we already have introduced for 
multiplication of complex numbers. (since otherwise…) 
 
It is straightforward but a bit lengthy to show the associative law for multiplication, so we shall 
settle for showing that multiplication of complex numbers is distributive with respect to addition. 
 

))(())(())()((

)(

21212121221121 ibbicciaaiccbaibaicc

cbcabac




   

 
Evaluating the last expression gives, however: 

 

 

))()((

)()()()(

221121

222221112111

2212211122122111

baibaicc

baiicbaicbaicbac

bcbicbicbcacaicaicac





 

 
The complex conjugate to a complex number 21 iaaa   is defined as 21 iaaa  .  
We notice that:  

(1.7)   2
2

2
12121

2 ))((|| aaiaaiaaaaa   
 

Where 2
2

2
1|| aaa   is denoted the modulus, the numeric or absolute value of a complex 

number.  
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There apply some minor rules about the complex conjugate to a complex number. 
  ____     _    _  
(1.8)  a + b = a + b 
  ____     _    _  
(1.8)  a - b = a  -  b 
  __      _  _  
  a·b = a ·b 
 
We settle for showing the last one: 

 
)()())((

)())((

12212211

_____________________________

12212211

____________________

2121

___

122122112121

__

babaibabababaibabaibbiaaab

babaibabaibbiaaba




 

 
The inverse number to a non zero complex number a is: 
 

(1.9)   2
2

2
1

211

aa

iaa

aa

a

a 


  

 
There is a tradition of never writing a complex number in the denominator, and always write a 
complex number in the form: iba  , but this may always be accomplished by multiplying with the 
complex conjugate to the denominator in both the numerator and the denominator.  
 
The equation: bax  , where a and b are complex numbers have the solution: 
  

(1.10)  2
2

2
1

12212211
2

2
2

1

2121 )())((

aa

babaibaba

aa

ibbiaa

aa

ba

a

b
x








   

1.1 de Moivre’s formula. The exponential and the trigonometric functions  
The complex number ),( 2121 aaiaaa   may be represented as a point in an ordinary 
coordinate system. Where r = |OA| is the distance from O to the point A. 
 

(1.11) 2
2

2
1|||| aaaOAr   

    Then ),( 21 aaa   can be written as: 
 

        )sin(cos)sin,(cos|| vivrvvaa a    

 
Where v is a direction angle for OA. 
 
 If:   )sin(cos)sin,(cos|| uiuruubb b   

is another complex number, then we may form the product of the two numbers: 
 

))cossinsin(cossinsincos(cos)sin)(cossin(cos vuvuivuvurruiuvivrrba baba   

 
If we recall the addition formulas for trigonometric numbers: 
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  cos(u-v) = cos u ∙cos v + sin u ∙sin v 
   

cos(u+v)  =  cos u ∙cos v - sin u ∙sin v 
 

sin(u-v) = sin u ∙cos v – cos u ∙sin v 
 

sin(u+v) = sin u ∙cos v + cos u ∙sin v 
We can then see that: 
 
(1.13)  )sin()(cos( vuivurrba ba   

 
Notably, if a = b then  )2sin2(cos22 vivra   
 
And by continuing the argumnent, we arrive at de Moivre’s famous formula: 
 

(1.14)  )sin(cos nvinvra nn   
 
Also from de Moivres formula follows Eulers formula, which is one of the most important 
formulas in mathematics. We define:  
 
(1-15)  yiyeiy sincos   
And subsequently: 
  )sin(cos yiyeeeee xiyxiyxz    
 
However, the condition for this definition to make sense is that the complex exponential function 
must obey its functional equation.  
 
  2121 zzzz eee   
(1.16)  )( 212121212211 yyixxiyiyxxiyxiyx eeeeeeee    
 
But this property we have already shown above by using the additional formulas, but with other 
variable names, that is:  

)sin(cos vivra a   and )sin(cos uiurb b       

)sin()(cos( vuivurrba ba   

Or 
   )sin(cos)sin(cos 2211

22221111 yiyeeeandyiyeee xiyxzxiyxz  
 

 
21212121

2121

)(
2121

2211

)sin()(cos(

)sin)(cossin(cos
zzyyixxxx

xxzz

eeyyiyye

yiyyiyeeee
 


 

 
From (1.15), it follows immediately: 
  
(1.17)  )(sin)(cos 2

1
2
1 ixix

i
ixix eexandeex    

 
The trigonometric functions of a complex variable are therefore defined. 
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(1.18)  )(sin)(cos 2

1
2
1 iziz

i
iziz eezandeez    

 
The definitions of the hyperbolic functions are, on the other hand, the same. 
  
(1.19)  )(sinh)(cosh 2

1
2
1 zzzz eezandeez    

 
From which we see that: 
 
(1.20)  izziandizz sinsinhcoscosh   
 
All the calculation rules and rules for differentiation of the trigonometric and hyperbolic functions 
can, however, be transferred directly to their complex analogous, without change. 
 
1.21 Example. Harmonic oscillations. 
In theoretical physics there are numerous differential equations, which lead to harmonic oscillations, that is, a solution 
of the general form. 

)cos(   tAx  

 
To solve such equations it is often advantageous to use the complex exponential function because differentiation 
means multiplying with a (complex) constant. 
Evidently only the real part can be the solution, but that offers no problem as long as the differential equations are 
linear. 
If we look at the generic differential equation for a mass m suspended in a spring having spring constant k. 
 

(1.22)  x
m

k

dt

xd


2

2

 

If we try with the solution 

  tiAex   
 

We get: 
k

m
T

m

k

m

k
Ae

m

k
Ae titi   222   

 
For this simple equation the advantages are moderate, since it can be easily solved by guessing the solution 

)cos(   tAx .  

Otherwise, when it is related to the equation for a damped harmonic oscillation. Such an equation can be reduced to: 
 

(1.23) 0
2

2

 xc
dt

dx
b

dt

xd
     where     b > 0  and  c > 0 

 
Solving this equation by traditional methods is by no means trivial. 
 

So we try with a complex exponential of the form: tzex   , where z in general is a complex number. 
It then follows: 

  tztz ez
dt

xd
andez

dt

dx   2
2

2

    

 

Inserting in (1.23) and reducing by tze   we get a quadratic equation. 
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02  czbz  
 

The discriminator is: cbd  42 .  If d > 0, then the quadratic equation has two real solutions.  
 

(1.20) 
2

4

22

4

2

22 cbb
z

cbb
z





   

 
On the other hand if d < 0 , then the quadratic equation has no real solution, but rather two complex solutions. 
 
 

(1.21) 
2

4

22

4

2

22 bc
i

b
z

bc
i

b
z





  ,  

 

If we put  
2

4 2bc 
 then we get from the first equation:  

 )sin(cos22 titAeAeAex
t

b
tit

b
zt 





 

 
The physical solution is the real part, where we have added an initial phase , such that we have to integration 

constants A and  , as we should have.. 

.(1.22)  )cos(2  


tAex
t

b

 

 
From obvious reasons (1.22) is called to solution for the damped harmonic oscillation.  

2. Equations with complex numbers. The binome equation 
We shall demonstrate the general solution to the equation: 
  
(2.1) )sin(cos||)sin(cos|| vivanxinxzaz nn   
 
Where, )sin(cos|| xixzz   and a are complex numbers 
 
The direction angles for a are: ...2,1,0,2  ppv   ,which immediately gives: 
 

n az ||||     and       2)1(,4,2, nvvvvnx  

 

n az ||||      and     )1(...,2,1,0,
2

 np
n

p
n

v
x


 

So the complete solution is: 
 

(2.2) ))
2

sin()
2

(cos(||||
n

p
n

v
i

n
p

n

v
az n 

 , )1(...,2,1,0  np  

 
The equation: azn   therefore has (for nonzero a ) always n solutions. 
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2.1 The general solution to the quadratic equation, having real coefficients 
Within the body of the real numbers the quadratic equation: 
 
(2.3)  02  cbxax   
 
Has none, one or two solution, depending on whether d < 0, d = 0 or d > 0 , where d =b2 – 4ac is 
the discriminator 
 
We shall then show, that within the body of the complex numbers, that the quadratic equation:  
 
(2.4)  02  cbzaz   
 
Always has at least one and at most two solution.  
 
For non zero a, we shall do the same rewriting, as we did for the real quadratic equation, initiated 
by dividing by a. 
 

                                       02

a

c
z

a

b
z    

 

                                  0
42 2

22







 

a

c

a

b

a

b
z  

 

  
2

22

4

4

2 a

acb

a

b
z









   

 

  
2

2

42 a

d

a

b
z 






   

 
If 0d , the equation has one or two solutions, which are determined by the solution formula. 
  

  cabdwhere
a

db
z 4,

2
2 


  

In the case d < 0, there are two complex solutions. 
 

  








 






 

a

di

a

b
z

a

d

a

b
z

2242 2

2

 

 

  cabdhvor
a

dib
z 4,

2
2 


  

 
If a, b, c are complex numbers it is not possible to give a general solutions formula. 
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The rewriting 

  
2

2
2

42
0

a

d

a

b
zcbzaz 






   

 
Is still valid, however, but the equation must in each case be solved as a binome equation.  

3. The fundamental theorem of algebra.  
We consider a n-degree complex polynomial : 
  
(3.1) 01

2
2

1
1 ...)( azazazazzP n

n
n

n
n  




  

 
Where n = 1, 2..., and the coefficients a0, a1, a2,…an-1 are complex numbers , where at least one is 
non zero.  The fundamental theorem of algebra then states:  
  
(3.2)  A n-degree  polynomial has exactly n roots. 
 
This theorem is not entirely simple to prove, but we shall conduct an adapted “proof”, by first 
showing that a polynomial of degree n > 0  always has at least 1 root.  
We remind you that for any complex number. 
 

 a = (a1, a2) =   a1 + ia2 

 Where 

|a| = 2
2

2
1 aa    

 
Which is also the distance |OA|, where A= (a1, a2) .  
 
Correspondingly for two complex numbers a = (a1, a2)  and  b = (b1, b2), representing  two points 
A and B, in a coordinate system 
 

|AB| =  |a – b| = 2
22

2
11 )()( baba    

 
Is equal to the distance |AB|. 
 
If a0 = 0 then the polynomial has the root z =  0, so we shall assume that 00 a . 

 
If z = x +iy, then the equation || z = r displays a circle having centre in O in the complex plane 

since: || z = r  222 ryx   
| 

As z passes through a circle Cr with radius r, then  P(z) will run through a curve CP. 
 
Our aim is to demonstrate that P(z) has a root, by showing that there must be a value of r, where 
CP passes through O. Let M be the number: 
 
   021 ,...,,,1max aaaM nn   
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Then we have for  |z| > 1: 

  
121

01
2

2
1

1

01
2

2
1

1

||)1||...|||(|

||||||...||||||||

|...||)(|





















nnn

n
n

n
n

n
n

n
n

n

zMnzzzM

azazaza

azazazazzP

 

Thus, we get:  
(3.3)  1|||)(|1||  nn zMnzzPz  
 
In quite a similar manner we have: 
 
(3.4)  |||)(|1|| 0 zMnazPz   

 
Now we let z run through a circle, having centre O and radius R, where R > 2Mn.  
Inserting |z| = R in the first of the inequalities (3.3), we get:  
 
(3.5) nnnn RRRzMnzzPz 2

11
2
11|||)(|1||    

 
As z runs through a circle with radius R once, then zn  will run n times through a circle with Rn. 
This follows, since: iveRz   implies invnn eRz  . 
 

In the figure is illustrated an example of the be 
behaviour of P(z), when z runs through a circle 
with radius Rn.  
The inequality (3,3) shows that the distance 
between zn and P(z) is less than nR2

1 , as long as 

1|| z . Therefore the curve that P(z) follows , will 
enclose the point O. On the other hand if : 

Mn

a
zz

2

||
||1|| 0   

it follows from the inequality (3.4): 
 
  |||)(|1|| 0 zMnazPz  , that 

(3.6)          02
1

0 |)(| aazP   

 
P(z) will therefore, for small radii |z – a0| = r , lie on a curve, which does not enclose O.   

 
The curve that P(z) describes in the two limits, corresponding to the inequalities (3.3) and (3.4) 
must somewhere (because of continuity) in between have passed through O , so there must be at 
least one value, where P(z) =0.  

 
When we have proved that any polynomial of degree n > 0 has at least one root, the fundamental 
theorem of algebra follows from the theorems we know from polynomials of a real variable, 
which, without restriction, can be taken over by the complex polynomials. 
 
1. If α is a root in a polynomial 0)()(  PzP , then )(zP is divisible by (z – α). 
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(3.7)  )()()( zQzzP   
 
2. If P(z)  has degree n > 0, then Q(z) has degree n-1. 
 
Since we have already shown that any polynomial with degree n > 0 has at least one root α, we 
may write: 
 
(3.8)  )()()( 11 zQzzP n   

 
Where the degree of  Qn-1(z) is n – 1. If the degree of Qn-1(z) is greater than 0 then Q n-1 (z) has at 
least one root, such that: 
  )()()( 221 zQzzQ nn      

And thus:   
)())(()( 221 zQzzzP n   

 
This line of argument can be continued until the degree of the Q-polynomial is 0. We may then 
write )(zP  as: 
  
(3.9)  021 ))...()(()( QzzzzP n      

 
Where 0Q  is a constant.  

 
From the equation (3.9) we conclude (from the zero-rule) that a polynomial of degree n has the n 
roots α1, α2,…,αn , and that it can have no other roots, which is the contents of :  
 

The fundamental theorem of algebra. 
 
As it is the case for real polynomials the roots in first and second degree polynomials are easily 
found, but somewhat more complicated for 3. degree polynomials, and as you probably know, 
there are no general methods to determine the roots in polynomials having degree larger than 4. 


