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154. solve for x: 25" % 42 =3

25°x 4 2% 3 weput: cos’x =1—sin’x and we find:
297 % 4 215°F =3 \e then substitute y =sin’x and we get:
2427 =3 o (2°)?+2=3-2"

This is a quadratic equation in 27, and for convince we put z =2". We then have:

—2+4

2242-32=0 ; d=4+12=16 z= z=-3 or z=1 & 27=1 < y=0

y=sinx=0 < x:p£

153. Solve: V/5—-x=5-x%7

Before we start, we plot the graphs of: f(x)=+/5-x and g(x)=5-x’
We can see that there are two solutions, but none of them
looks like rational numbers.

If we square both sides of v5—x =5—x" we en up with a
4t degree polynomial. But there are no general methods
to solve, besides an adapted Cardano formula. We get:

5—x=25+x"-10x> < x*—=10x*+x+20=0

The idea is the to try to factorize this expression into two
2. degree polynomial — if possible.
x'=10x" + x+20 = (x* + ax + b)(x* —ax +c¢)

Since there are no term with x°, we have put
ax and —ax since it will insure that that the terms with

x* will cancel, By multiplying the two polynomials, we find:
¥ =10x" +x+20=x".—ax’ + x> + ax’ —a’x* + acx + bx* —bax + bc =

x* +cex’ —a’x’ + acx + bx” —bax + be
So we identify the coefficients to the power of x:
c+b—a*=-10 ; ac—ba=1; bc=20
From these equations, we may get an expression for b and ¢ expressed by a.

c+b=a’-10=; (c—b):l' bc =20
a

b
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2c=612—10+l 217:612—10—l = c:%(a2—10+l) bz%(az—lO—l)
a a a a

And we thus find an equation to determine a. ¢=1(a’ —10+l) b=1(a’ —lO—l)

a a

1

be=20 < g(az—10+1)(a2—10——)=%((a2—10)2—%)=20 <
a a a

(az—lo)z—izzso o W-100-1280 o u’+100-20u-L1=80 o
a u u

wW+20u-20u'-1=0 < < uw-20u*+20u-1=0

If we put u = a” we find a third order equationinu. a=1or a=-1.

We can immediately that u = 1 is a root. Polynomial division with u — 1 gives:
w =20u” +20u—1= (x—l)(u2 —19u +1)

19+4/357

2
We shall first concentrate on the root # = 1, and we calculate b and c.

w —19u+1=0; d=361-4=357; u=

u=a- = a=1 or a=-1.

a=1: c:%(a2—10+l)=—4 b=%(a2—10_l)=_5
a a

a=-1: c:%(a2—10+1):—5 bz%(a2—10—1)=_4
a a

These values are inserted in:
2 =102 +x+20=(x* +ax +b)(x* —ax+c) = (x> +x=5)(x* —x—4)

Using a = -1 gives the same product, but with the factors in inverse order.
X +x-5=0; d=1+20 ; x:_liTm

1+17

2

x=1.79 or x=-2.79

X' —x—-4=0 d=1+16 ; x= x=2.56 or x=-1.56

From the graph, we can see that the solutions are: x=-1.56 or x=1.79

154. A simple exercise: n!=n’—n

For n =4, we have; nl=n’—n gives: 24 <64 —4
For n =6, we have; n!=n’—n gives: 720 >216—6
For n =35, we have; nl=n’—n gives: 120= 125 -5.
The solution is therefore n =5
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155. No analytic solution: /1++x =1+3x

A direct approach would require to times lifting to the 6" power. Hardly the way to find the solution
in a lifetime.
So we guess! Obvious x = 0. is a solution, but? To guess other solutions, we try to choose x, such

that 1+ \/; is a cubic number.

1+/x =1,8,27,64.... it gives forx. 1, 4, 9, 16. and
1+/x = 2, 3,4,5, 6, but none of them are cubic
numbers. Looking at the right side /1+ VYx , then x = 27

gives 41+ Yx =2 , but this does not comply with the left
hand side.

So it seems that x = 0 is the only solution. This is also
confined by looking at the graph to the left, plotting the
left side and the right side in the same coordinate system.
g The only intersection point is (0,1)

156. Solve for x: 2" 3" =+/6"-9*

2”‘—3"=m .Weput a=2" and b=3". Then the equation reads.
a—b=vab-b < a-b=+bJa-b < (a-b’=HbJa-b)} <
(a-bY’=b(a-b) & a-b=b <& a=2b

2722.3 o (gj =2 o x= 1“;
3 In()

13
157. Solve:logx=1logx® —1
13
logx =1logx® —1. We square both sides and find:

13
= 1
log’x=logx® -1 < 10g2x=§logx—l & 6log’x—13logx+6=0

We put y=logx and find:

2 13+5
6y —13y+6=0 d=169-144=25 y:T &S y=9 o y=4 &

logx=9 or logx=4 < x=10° or x=10"
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157. Solve for x: x* =2«
We take log, on both sides: xlog, x = ! & x'log,x=1 < log, X =1
X
x° =2
. . . V2!
It is easy to see that the solution is x = V2 , since: V2T =2

\/x2+1—x]:x2

X

158. Determine f from the equation: f{

We put:
2
A/ 1-
y:M P yxzw/x2+l—x = yx+x=\/x2+1 =

RS
Ox+x)’ =Wx*+1) o X+ +2x’=x"+1 <

¥ +2y)=1 o x*= !

(¥’ +2y)
1 1
f(ﬁ—m f(x)—m

159. Determine a and, such that: 2 -2’ =2016

Since 2'° =1024, we make a try with a = 11. 2" =2048 and 2048 - 2016 = 32=2°
So: a=11 and b=5.

160. Simplify /247> —153
V2477 1537 = /(247 —153)(247 +153) = /94400 = 2094

161. Solve: 2% +4% =8*
We put y:2"2 and then we get:
y+y'=y o y-)y'-y=0 o y’-y-H)=0 <

+
y=0 or Y -y-1=0 d=1+4=5; y:# - x2:1+2\/§
o 1++/5
2
162. Simplify 3334-6663-3331+3527

3333°
We put x =3333 and then we have:

3334=x+1; 6663=2x-3 ;3331=x-2 3327=x-6
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We then replace the numbers with their expression with x.

(x+1)-(2x=3)-(x=2)+x—6
x2

(x+1)-(2x=3)=2x>-3x+2x-3=2x"—x-3

(x=2)2x* —x=3)=2x" —x* =3x—4x* +2x+ 6 =
2x —x?—x—4x*+6=2x"-5x*—x+6
Now we add x — 6: 2x° =5x* —x+6+x—6= 2x° —5x*

— . —_ —_ 3_ :
(r#D)(2e=3) (=) Far =620 -5 ) 566665 =661
X X

163. Solve for x: x> —18x—17/x =0
x> —18x—17J/x =0 We put\/; =y, then the equation reads:
y*' =18y’ -17y=0 < y=0 v ' -18y-17=0

It is obvious to guess the solution: y =-1
We then make polynomial division with y +1.

y+1]y’ =18y -17]y* = y—17
vy
-y'-18y
-y -y
-17y =17
-17y-17

+
¥ -y-17=0; d=1+68=69 ; y= ;/_:

{27
xX=y =

2

164. In a right angled triangle the a = 35, b = 84, Find the height h
This is a easy one. The area of the triangle may be written
in two ways: 2ab=1hc = ab=hc. At the same time:

c=+a*+b*,s0 h:a—b:%:m.&

c
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165. &’ -b*=9 and ab=3. Determine a+b

This can be solved but the numbers are not very friendly.
a’-b*=9 < (a-b)a+b)=9

2 _ (P = AV 81
(a+b)y"—(a—b)"=4ab N (a-b) @by
(a+b) - il >—4ab=0 <

(a+b)

(a+b)" —4ab(a+b)* -81=0 we put y=(a+b) <
V' —12y-81=0; d=144+4-81=468

+
y:fiifﬁﬁ =  y=3+J117 = (a+b}=3+117 =
a+b=+3++117

166. Solve for x: 3" +4"-6" =1

344 -6"=1 < 3 +(2%)°-23 =1

We put 3' =a; 2° =b and then we get:

a+b’—ab=1 < b*-l-a(b-1)=0 < GB-D)b+D)-ab-1) < G-Db+1-a)=0 <
b=1 v b-a=-1

2"=1 v 2"-3"=-1 < x=0 v x=1

Since 2 —3" is an decreasing function the only solution is x = 1

154. solve for x: 2" +2°* =3

29X 42X _ 3 we put:  cos’ x=1—sin’x and we find:
28 4 21 = 3 wwe then substitute y =sin®x and we get:
2427 =3 o (2')Y+2=3-2"

This is a quadratic equation in 2”, and for convince we put z =2". We then have:

—2+4

2242-32=0 ; d=4+12=16 z= z=-3 or z=1 < 2’=1 < y=0

y=sinx=0 < xzp%
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153. Solve: V/5—-x=5-x7

Before we start, we plot the graphs of: f(x)=+5-x and g(x)=5-x’

We can see that there are two solutions, but none of them
looks like rational numbers.

If we square both sides of v5—x =5—x" we en up with a

4t degree polynomial. But there are no general methods
to solve, besides an adapted Cardano formula. We get:

FETT L S 254 2108 < x'—10x7 +x+20=0

The idea is the to try to factorize this expression into two
2. degree polynomial — if possible.
x'=10x" + x +20 = (x* + ax + b)(x* —ax +c¢)

Since there are no term with x°, we have put
ax and —ax since it will insure that that the terms with

x* will cancel, By multiplying the two polynomials, we find:
¥ =10x" +x+20=x".—ax’ + x> + ax’ — a’x* + acx + bx* —bax + bc =

x'+ex? —a’x? + acx + bx* —bax + be

So we identify the coefficients to the power of x:
c+b—a*=-10 ; ac—ba=1; bc=20
From these equations, we may get an expression for b and ¢ expressed by a.

1

c+b=a’-10=; (c-b)=—; bc=20
a
2 1 2 1 2 1 2 1
2c=a" —-10+— 2b=a"-10-— < c=%(a"-10+-) b=%(a"-10-—)
a a a a
And we thus find an equation to determine a. ¢=1(a’ —10+l) b=1(a’ —lO—l)
a a
be=20 & (@104 )@ ~10-1)=1((@®~10¢ —)=20
a a a
@ -10P —L =80 & (u-100-1=80 o u?+100-20u- =80
a u u

wW+20u—-20u"-1=0 < <  uw-20u"+20u—1=0

If we put u = a” we find a third order equationinu. a=1or a=-1.

We can immediately that # = 1 is a root. Polynomial division with u — 1 gives:
w =200’ +20u —1=(x=1)(u* —19u +1)

19+ /357

w —19u+1=0; d=361-4=357; u= 5
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We shall first concentrate on the root # = 1, and we calculate b and c.

a=1: c:%(a2—10+l):—4 b:%(gz—lo_l):_s
a a

1
2

a=-1: c:%(a2—10+l)=—5 b (a2—10—l):_4
a a

These values are inserted in:
X' =10x" +x+20=(xX* +ax + b)(x* —ax+c) = (x> +x=5)(x* —x—4)

Using a = -1 gives the same product, but with the factors in inverse order.

—1+4/21
X +x-5=0; d=1+20 ; x=T*/_ x=1.79 or x=-2.79

117

2

X —x-4=0 d=1+16 ; x= x=2.56 or x=-1.56

From the graph, we can see that the solutions are: x=-1.56 or x=1.79

154. A simple exercise: nl=n’-n

For n =4, we have; n!=n’—n gives: 24 < 64 — 4
For n =6, we have; nl=n’—n gives: 720 >216 -6
Forn =5, we have; n!=n’—n gives: 120=125 -5.
The solution is therefore n =5

155. No analytic solution: /1++x =1+3x

A direct approach would require to times lifting to the 6" power. Hardly the way to find the solution
in a lifetime.

olution, but? To guess other solutions, we try to choose x, such

14++/x =1,827 64.... it gives forx. 1, 4, 9, 16. and
1+/x = 2, 3,4, 5, 6, but none of them are cubic

numbers. Looking at the right side /1+ VYx , then x = 27

gives 41+ Yx =2 , but this does not comply with the left
hand side.

So it seems that x = 0 is the only solution. This is also
confined by looking at the graph to the left, plotting the left
side and the right side in the same coordinate system.
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The only intersection point is (0,1)

156. Solve for x: 2°-3"=+/6"-9"

2X—3X=M.Weputa:2x and b=3". Then the equation reads.
a—b=vab-b < a-b=+bJa-b < (a-b}=HbJa-b)} <
(a-bY’=b(a-b) & a-b=b <& a=2b

2722.3 o (gj =2 o x= 1“;
3 In()

13
157. Solve:logx=1logx® —1
13
logx =1logx® —1. We square both sides and find:

13
= 1
log’x=logx® -1 < 10g2x=z3logx—l & 6log’x—13logx+6=0

We put y=Ilogx and find:
+
6y°—13y+6=0 d=169-144=25 y=—"" < y=9 or y=4 <

logx=9 or logx=4 < x=10° or x=10"

1
157. Solve for x: x* =2~

. 1 >
We take log, on both sides: xlog, x=— < x’log,x=1 < log,x" =1
X
X =2
: . . V2’
It is easy to see that the solution is x = V2, since: /27 =2

\/x2+1—x}:x2

X

158. Determine f from the equation: f(

We put:
VX 41—
y:M & =X +l-x & xtx=Jx’+l o

X
Ox+x)’=Rx"+1) o PX+x+2x’=x"+1 <
_
(»* +2y)
1 1
P X)=——
(V> +2y) S (x* +2x)

(3 +2y)=1 & x*=

S =
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159. Determine a and, such that: 2 -2’ =2016

Since 2'° =1024, we make a try with a = 11. 2" =2048 and 2048 - 2016 = 32=2°
So: a=11 and b=5.

160. Simplify /247> —153
V2477 1537 = /(247 —153)(247 +153) = /94400 = 2094

161. Solve: 2% +4% =8*
We put y:2"2 and then we get:
y+y'=y o y-y'-y=0 o y’'-y-H)=0 <

+
y=0 or y-y-1=0 d=1+4=5 y:# N x2:1+2\/§
o 1+\/§
2
162. Simplify 3334-6663-3331+3527

3333°
We put x =3333 and then we have:

3334=x+1; 6663=2x-3 ;3331=x-2 3327=x-6
We then replace the numbers with their expression with x.

(x+1)-2x-3)-(x—-2)+x-6

2
X

(x+1)-2x=3)=2x*-3x+2x-3=2x"—x-3

(x—2)2x* —x—3)=2x"—x>—3x—4x" +2x+ 6=

2% =X —x—4x"+6=2x —5x> —x+6

Now we add x — 6: 2x° —5x° —x+6+x—6= 2x’ —5x°
(x+1)-(2x=3)-(x—2)+x-6 2x’ —5x’

2 2
X X

=2x-5=6666—-5=6061

163. Solve for x: x> -18x-17+/x =0
x> —18x—17+/x =0 We put +/x = y, then the equation reads:
y'-18y"-17y=0 < y=0 v ' —18y-17=0

It is obvious to guess the solution: y = -1
We then make polynomial division with y +1.
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y+1]y' =18y -17]y* = y-17
yi+y
-y’ 18y
-y’ -y
—17y-17
—17y-17

Y —y-17=0; d=1+68=69 ; y=

7]
x=y =

1+469  1+4/69
2 2

2

164. In a right angled triangle the a = 35, b = 84, Find the height h

This is a easy one. The area of the triangle may be written
in two ways: 2ab=1hc = ab=hc. At the same time:

|4
S c=a’+b? 50 h:“—lﬁ%:z%z

c

165. o’ -b’=9 and ab=3. Determine a+5
This can be solved but the numbers are not very friendly.
a’-b*=9 < (a-b)a+b)=9

81

(a+b)y"—(a—-b)"=4ab N (a-b) :(a+b)2

(a+b) - —4ab=0 <

(a+b)’
(a+b)* —4ab(a+b)* -81=0 we put y=(a+b)} <
Y =12y -81=0; d=144+4-81=468
+
y:12—2v46_8 = y=3+117 = (a+b)}=3+117 =

a+b=+3+4117
166. Solve for x: 3" +4"-6" =1

344 -6"=1 < 3 +(2)Y-23"=1
We put 3" =a; 2 =b and then we get:
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a+b’—ab=1 < b*-l-a(b-1)=0 < GB-D)b+D)-ab-1) < G-Db+1-a)=0 <
b=1 v b-a=-1
2°=1 v 2"-3"=-1 & x=0 v x=1

Since 2 —3" is an decreasing function the only solution is x = 1

167. Integer solution to

x—6 x-5 x—-4
- + =
2020 2021 2022

Operating with large integer numbers is somewhat troublesome, so we put a= 2021 and y=x-5,

then we get:
y—1 y y+ 1 _3

a— 1 a a+ 1

To get rid of the denominators, we multiply the equation with (a— 1) a(a+ 1) . We then get:
(v=1Data+ 1) +y(la=1(a+ 1) +{yv+D(a=Da=3(a=-1)ala+1)

va(a+ 1) —al(a+ 1) +v(a=1)(a+ 1)+ (y+1){a=1)a=3(a-1)al(a+ 1)

a2+ a+a2=14a%-a) —a’-a+a’-a=3(a-a(a+1)

)‘( 3a%- ]) =a( 3a’- l)
y=a
x=y+ 5=2026

168. x° -2y =1, where x and y are primes

The solution is based on guesswork. The solution is x=3 and y =2, since: 3> -2-27 =1

169. Ridiculous easy. Determine x: 3% +3%* +3% =3*
4343 =3 o 3.3%=3" o =3 o x=89

170. A simple 2. order differential equation: y'"=y'+y

In one of my articles: The differential equations of physic: 1 have shown the well known theorem:
The solution of any differential equation of nth order with constant coefficients can be reduced to a
solving (using complex numbers) to an algebraic equation of order n by putting y =", where k is
a complex number. This is demonstrated below:

Y'=y+y. Weput y=€, and we get: ke —ke® - =0 < k*-k-1=0

RENG

2

kK*—k-1=0, d=1+4=5 k

1+\/§X 1-
y=ce ? v y=ce

S

X
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171. Solve for x: 4" +16° =272 (Easy one)

4°+16" =272 < 4" +(4")°=272. Weput y=4".

—1+
P m272=0; d=1+4-272=1189=33" ; y— 1133

y=16 v y=-17

4" =16 < x=2

. ) > +3ab
172. Simplify: £ _
piity b +3a’b
3 2
a’ +3ab =1 o a+3ab*=b+3a’b < a’+3ab>-b’-3a’b = (a-b)’

b +3a’h
173. Solve: 2" +(3)" +(3)" =3. (Cheat problem)

2+ (3) +(3)" =3.

This equation cannot be solved by traditional means, but you notice that 2-2-2 =1 and thus:
23 () =1 =1

Ifweput 2*=a,, (3)"=b and (3)"=c

We have two equations: a+b+c=3 abc=1, but these have the only solution: a=1,b=1; c=1
But this requires that : x = 0. Which also sees is the only solution.

174. Find x such that x* =100
I can't see any analytic solution to this equation, but some qualified guesses led to
x=310, as wecan see: ¥° =10 and x" =(310)"=10%=100.

175. Solve for x log, x+1log, x =3

log, x+log, x=3

1
J’:log4x = x=4" = logzx:y10g24 :10g4x10g24 P 10g4x= 0g, x
log, 4
log, x+log,x=3 < 10g2x+10g_2x:3 - 10g2x+10g2x:3
log, 4

Zlog,x=3 < log,x=2 <& x=4

176. Determine f(x) from f(f(x))=x>+x+1(Not a friendly exercise)
fUf@)=x"+x+1 < [T =" +x+]) & f()=f"("+x+])
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y=x"+x+1 < f'(y)=x
y=x2+x+l = x2+x+l—y:0 , d:1—4(1—y):y—3’

—liwzly—3 fl(y):—liwzly—3 - fl(x)z_li;/x_3

X=——""—

f@=1"® =‘1% Vx-3

177. Solve for x: 3" +9* =27"
349 =27" & 3 +(3) =3
We put: y=3", and we get:

y+yi=y o y-y'-y=0 o y(’-y-1)=0 =3
+
y=0 v yi-y-1=0, d=1+4=5 y:1_2«/§
1n(1+«/§)
+
3=0 v 3*:1‘\5 o 3":”*/? o x=— 2
2 2 In3

1

278. Determine f(x) from the equation: f(x+l) =x"+—
X X

We put y:x+l
X

y2:(x+l)2:x2+iz+2
x x
2 2 1
y -2=x"+—
x

(' =2) =(x’ +L2)2 =x4+L4+2
X X

(y2—2)2—2:x4+%

((yz—2)2—2)y:(x4+é)(x+%)=x5+x3+%+%2x5+%+x3+%
) , 1 1 ;1 1
OV -2y=(x"+=5)x+—)=x"+—+x+—
x x x x

1 1 1 1
O’ =-2)y=(x" +—2)(x+—)=x3 S tx+—
x x x x

1
(y2—2)y—y=x3+?
|
(-2 -2)y-(*-2y+y=x tx

FM=((* -2 -2)y-(y*-2)y+y
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fO)=((*-2-2)y-(*-2)y+y
(=27 -Dy=(F =Dy y=x'+
SO =" =2 -2)y—-(*-2)y+y
(=27 -Dy=(F =Dy +y=x'+

S =" -2 -2)y-("-2)y+y
f(xX)=((x* =2 -2)x— (x> =2)x+x

279. Solve for x: x*+x+6Jx+2=18
To try to find an analytic solution will lead nowhere, but at a sight we can see that x = 2.

Is a solution since; 2> +2+6+/2+2 =18
As the function is increasing, there can be only one solution.

180. x =45678° —45676° . Determine x_;Z )

We put a = 45676, and then we have;
x=(a+2)’-a’=a’ +8+6a’+12a—a’ &
x—2=6+6a"+12a=6(a’+2a+1)=6(a+1)> =

1/%=a+1=45677

181. Solve: x* +x+64/x+2 =18
It seems a waste of good intellect go try to solve this analytically. However, it is obvious hat x = 2
is a solution, since: 2> +2+6+4/2+2 =18.

182. Solve for x: 16" +20" =25*
16" 20" 25

16" +20" = 25" + =
16 16° 16*

(-]

We put: y = [%j and then we have.

ler:y2 = yz—y—I:O; d=1+4=5 y=
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) 1++/5
(5)" 1445 n—5)
4) - < T s
4 2 3
4

1
182. Solve for x. vx'* =x"

1
V'l =xV We put y= Jx , and we then have:

1 2
. S 2
¥ =x o xX=x o y== & y'=2 o x=2

183. Solve: 7x°=98 & =l =1 o xszg
184. Solve: 23 =6

237" 26 <  xIn2+x’In3=In6 < xIn3+xIn2-1n6=0

_ —In2++In*2+41n3In6
2In3

d=In*2+4In3In6. ; x

185. Solve: ¢ =2

¢ =2 & e'=h2 < x=In(n2)

186. Determine the angle x in the triangle shown below.

Since the triangle DBC is isosceles, we must
B have ZCDB =2x. The angle.

ZADB =180—-2x.

In the triangle ABD we thus have:

x+180-4x+180-2x=180 <
~5x=-180 < x=36

5

. . +x+1

187. Simplify: ———

x +x+1

It is obvious to make polynomial division. Since the division succeeds, it is actually a very simple

exercise.
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XX+ +x+1|x = x> +1
X +xt+x’
—xt=x
—xt—x—x

2
x +x+1
X'+ x+1

XAx+l

And therefore: 5———=x"—x* +1

x +x+1
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188. Simplify: (991)* =(100-1)* =10* + 1 —100

189. Solve for x: \1++/x =x—1

\/1+\/;=x—1 = 1+\/;:x2+1—2x = x=x>-2x

189. Solve for x and y: x+y=(x

Weput y=+/x < x=)*,and then we have:
Ji=x*-2x o y=y"-2y" o

yi-2y'-y=0 &

Yy =2y-1=0

The last equation has no simple solution and must be
solved with Cardano's formula.

Although I have presented a derivation on Cardano's
formula, in the mathematics section of my homepage, it is
not worth the effort to repeat it here. Instead a

graph of the function is shown below.

-y)’large

The right hand side ()c—y)2 canbe: 1,4, 9, 16,...
Intuitively the right hand side, should not be to large
If we make a try with: (x—y)* =9, it leads quickly to the solution

(x,»)=(63) 6+3=9 and (6-3)°=9

190. 2* =7 =196. Determine:
Xy

First we notice that: 196 =2%-772.

xX+y
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2* =196 w296 i 72196 o poi0I6
In2 In7
:ln196+ln196:1n196(L+L):1n1961n2+1n7
In2 In7 In2 In7 In2ln7
In%196
xy:
In2ln7
In2+1In7
xry 6 7 I2+In7  Inl4
Xy In*196 In196  1n196
In2ln7
From 196=22-7" = In196=2In14, so % _1
In196 2
191. x=3+2+/2. Determine: \/_—L
Jx
y=34242 = o1 1 (3‘2\5):(3‘22*/5):3—2\/5
x 3+242 (3+24/2)(3-242) 3-8
Jr——L - 3422 - \3-22
Jx

(\/}—%f=2\/5+3+3—2\/5—x+2J3+2\/N3—2\/5:6—2@:4 . 50

192. Simplify: v46-12414

We shall try to write: 46 —124/14 as (a\/z—bﬁ)z =24’ +7b* - 2ab\14
We then have ab=6  and 2a’>+7b* =46
The first equation could be: a=3 and b=2, andindeed 24> +7b> =18+28 =46

So V461214 =342 + 247

193. Solve: In(¢* +1)=2x (undergraduate level)
In(e"+1)=2x < (e"+)=e" & - -1=0

Put: y=¢" then we have:

1£4/5 1+45 1+45
e = = x=In( )

2_y—1=0 ; d=1+4=5 =
yo-y y=— 5 5

page 21
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194. Find the integer solutions to: x,/y + yV/x =182 and xvx + y,[y =183

Since the solutions (x, y) must be integers, they must be chosen among the numbers: 1, 4, 9, 16,.25..
But this narrows the solutions a lot. The only one, which are close to the solution is (25,16), but this

gives: x\[y + y\x =25-4416-5=180 and xvx + y\[y =5-25+16-4=189 .
This is a bit strange, since other candidates are far from the stated values.

So alternatively, we shall try an analytic solution. We put:a = Jx oand b= v , and we get:
Ny +yWx =182 o a’b+b’a=182 and xJx+yy=183 = a+b =183
a’h+b*a=182 ab(a+b)=182
a’+b’ =183 a+b’ =183
The last equation invites to use the formula: (a +b)’ = a’ + b’ +3ab(a +b)

From which we find: (a+5b)’ =183+3-182=729=9" = a+b=9. So far so good!

) . ) 182
To avoid a third degree equation we use: ab(a+b)=182 = ab= %

But here arise a problem, since 9 is not a divisor in 182. However, if we continue the calculation
and insert b =9 — a. we find:

—a2+9a:% < 9a’-8la+182=0 d=81"-36-182=9-Okay!

81+3
a=
18

That was we could have expected from the preliminary analysis. There are no integer, not to speak
of a quadratic number, solution.
It is a long time ago that I found this problem on the site. Since could not find an solution using the
numbers 182 and 183 , I have visited the site several times to clear it up, but this problem has been
taken away for a long time. But today 14.07.2022, it was there again but with x and y replaced by a
a and b and 182 and 183 replaced by 180 and 189. So I was right from the beginning, although the
calculations above were promising.

a=4.89 or a=4.6711N

195. Solve for (a ,b):i+i:l

2a 3b 4
1 1 1 1 1 1 1 a-2
—t—=— & —=——— - =
2a 3b 4 3b 4 2a 3b 4a

If the tem on the right hand side should be a genuine fraction: a must be equal to 3, and then we

have: L:61_2:L so a=3 and b=4
3b  4a 12
And indeed: L+L:l+L:1+2:1

2¢ 3 6 12 12 4
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196. Solve for x: 33x7>+49x™' —10=0 (trivial)
33x7449x"'-10=0 < 33+49x-10x’=0 <
10x> —49x-33=0 ; d=49"+4-10-35=61°
x:49i61

x=55 or x=6

197. Find integer solutions to: %+%+L:1

Xy Xy

1 1 1 . . . 2 2.
— +—+—=1 To getrid of the denominators, we multiply by x“y~:

S 4

y* +x* +xy = y°x”. The problem is of course the lack of the term 2xy. If we add the term xy on
both sides, we find:

Y+ H2xy=yx"+xy & (x+y)Y =xp(xy+1)

This shows that xy(xy+1) should be a quadratic number, that is 1, 4, 9, 16, 25,36....

114K

We look at the number a(a+1)=k* < a*+a—-k’=0 ; d=1+4k> a= 5

1+4k*> =1,4,9,16,...has no quadratic integer solution, so the exercise has no solution.

If however the exercise was:

Lz + iz + 2 1 the solution would be: (x+y)’ =(xy)> < x+y=xp

Xy Xy
But this has neither an integer solution, whereas x+)+1 =xy has the solution (x,y) = (2,3)

198. Determine integer solution to.\/;+\/;=l3 ; x—y=65

X+ =13 ; x—-y= e first equation confines the first equation to:
Jx+Jy=13 y =65 The first equati fines the first equati
(Jy.Ax) = (2.11), (3,10). (4,9),(5.8).(6,7), But it is easy to see that only (4,9) complies with the

second equation, since; x/;+\/;=\/§+\/ﬁ=9+4 =13 and x—y=81-16=65.
This can also easily be confirmed by calculations:

x—y=Wx =N+ =x-313=65 = x-yy)=5

The two equations:
(\/; - \/; )=5 and (\/; + \/; ) =13 may easily be solved to give: (x,y)=(9,4)

199. Solve the equation: z+l=4
z

o o Zlazii-o0 ; d=16-4-12 z- )
z




