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Chapter 1 The foundation of geometry 

1. The axioms of geometry 
The classical geometry is concerned with properties of points, lines and geometrical figures in the 
plane. We shall not give an abstract rigorous definition of these geometrical objects, but settle for a 
more descriptive definition. 
 
(1.1) A point has no extension, but only marks a position in the plane. 
  
(1.2) A straight line segment is the shortest path between two points. If you extend the line    
            beyond the two points you get a straight line. A line is only extended in one direction. 
 
(1.3) Two semi-lines with a common origin are said to form an angle.  
 
(1.4) Two lines are parallel if they do not intersect each other. 
 
 
 
 
 
 
 
 
 
 
 
What applies to all mathematical endeavours, and is inherited from the axioms of Euclid, the 
geometry is built axiomatic and deductively. Axiomatic means that the theory is founded on 
some obvious assumptions called axioms. Axioms cannot be proven from more fundamental 
assumptions but one axiom can replace another, which makes the replaced axiom a theorem. 
Deductively means that the theory is built step by step from the axioms using logical inferences, 
called mathematical proofs. The inferences you proof are the called sentences or theorems. 
  
The axioms may be chosen with certain arbitrariness. Theorems can be switched with axioms, 
which then become theorems. The axioms below are not the same as the ones proposed by Euclid 
but the content is the same. 
 
(A1) Through two points can be drawn exactly one line. 
  
(A2) Through a point may be drawn exactly on line parallel to a given line. 
 
(A3) When two parallel lines are intersected by a third line, then even lying angles are equal to    
            each other. 
 
(A4) When two lines intersect, then the opposite angles are the same.  
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(A5)  The ratio between the even lying sides in two single-angled triangles is constant. 
 
Below we have tried to illustrate the content of the five axioms. Notice especially A5. 
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Often the proportionality is written in another way: 
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Correspondingly for the two other sides. 

1.1 Angles 
Two semi-lines having common origin are said to 
form an angle. The origin of the two semi-lines is said 
to be the vertex of the angle. Seen from the vertex, we 
speak of the left and right leg of the angle. 
To define the number of degrees of an angle, we draw 
a circle with centre in the vertex O and arbitrary 
radius. 
The circle arc is then divided in 360 equal pieces,  

      where each one is one degree (10)  
Using 10 as the unit, the arc b is then measured by the number of degrees spanned. The result is 
called the degrees of the angle. So angles are measured in degrees. 
 
The number of degrees g0 represents the same fraction of 3600 that the arc b represents of the 
circumference of the circle. If r is the radius of the circle, this can be expressed as: 
 

O l

m
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The degrees of half the circumference is 180o, corresponding to that the semi-lines l and m form a 
straight line. If the two semi-lines cover a quarter of the circle, then the degrees are 90o. This is 
called a right angle. Two lines are then perpendicular to each other, and they are said to be 
orthogonal.  
 
 
 
 
 
 
 
 
 
Two angles which together are 1800 are called supplementary angles, and two angles which 
together are 900 are called complementary angles. 

2.  Some simple geometrical theorems 
We shall first show a theorem, which appears obvious, which it also is, but we do it to demonstrate 
that it can be derived as a consequence of axiom A2. That theorem may in fact replace axiom A2, 
and this would make A2 to a theorem. The reason for proving this theorem is also that it is 
frequently applied. 
 
2.1 Theorem: If two lines both are parallel to a third line, then they are mutual parallel. 
  
Proof: (indirectly).  
If the two lines were not parallel, then they would intersect each other. Through the point of 
intersection, there are then two lines parallel with the third line; in contradiction to A2.Therefor the 
two lines must be parallel. The next theorem is well known. 
 
2.2 Theorem: The sum of the three angles in a triangle is 180o 
 
 
 
 
 
 
 
 
 
 
 
 
 
The proof can be read from the figure above. There may be drawn only one line through B parallel 
to AC. (Axiom A2). Furthermore, the line segments AC, AB and BC are prolonged outside the 
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points A, B and C. The line AB intersects two parallel lines and therefore the even lying angles are 
the same. (Axiom A3).  
The Line BC also intersects two parallel lines and we retrieve the angle C above B. Finally AB and 
BC intersect each other in B, and opposite angles are the same (axiom A4).  
So we retrieve the angle B at the top of B. As it seen from the figure the sum of the three marked 
angles is 180o, and therefore also A + B + C = 180o. 
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Chapter 2  Geometrical constructions  

1. The congruence sentences 
Geometrical construction is traditionally conducted only with dividers and rulers. The ruler is 
used only for drawing straight lines. In principle the ruler is without printed measurement units. 
Measurement of a line segment is done with the dividers. 
This has a more profound reason. In the trigonometry, we learn to calculate the unknown pieces in 
geometrical figures. The connection to the geometry is that, if you may calculate the unknown 
pieces in a geometrical figure by trigonometry, then it is in principle also possible to construct the 
geometrical figure with a dividers and a ruler. 
 
Congruent means equal in a strict sense. If two figures are congruent it means that they may cover 
each other exactly, by a translation. 
A translation can be a movement along a straight line, a rotation about a point, or a mirroring in a 
line. A combination of the three translations is also a translation.  
 

2. The four sentences of congruence 
 
K1:  Two triangles are congruent if the have 3 sides in common. 
 
K2: Two triangles are congruent if the have 2 sides and the intermediate angle in common. 
  
K3: Two triangles are congruent if they have 1 side and the two adjacent anglers in common. 
  
K4: Two triangles are congruent if the have 1 side, an adjacent and the opposite angle in 
            common. 
 
The proof for the congruence sentences is conducted by constructing the triangle and verifying that 
there is one and only one solution. 
 
Proof of K1: Below is drawn the three sides a, b and c. 
 

Explanation: The side a = |BC| is allocated. 
With the centre in C and radius b, is drawn a 
circle. With the centre in B and radius c, is 
drawn another circle. A is then determined as 
the intersection between the two circles. 
Since two circles can have at most two 
intersection points, the construction may 
have at most two solutions. From the 
construction it is evident that the two 
solutions are congruent by mirroring in the 
line through BC. 
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The triangle ABC is therefore uniquely determined by the three sides a, b and c, and two triangles 
having three sides in common are therefore congruent. 
 
Discussion: From the construction it appears that a condition for solution is that a < b + c. A 
similar condition must apply for the two c <a+b and b < a + c. If these inequalities are solved 
with respect to c one finds: 
 
   c < a + b   c > a - b  c > b - a  
 
These 3 inequalities can be brought into one double inequality that in all cases is the condition for 
a solution. 
    |a - b| < c < a + b 
 
Proof of  K2: 

 
 
Explanation: The angle A and the two sides b and c are given. To construct the same angle with 
vertex in A  is done the following. The side b with end points A and C is drawn 
With the centre in the vertex of the given angle and in A are drawn circles with the same radius. 
The arc that the given angle spans on the circle is measured with the dividers, and is marked on the 
other circle. The side c is then drawn from A to the intersection point of the two circles. The end of 
c is then connected to B to finish the triangle. The construction has always one and only one 
solution. 
 
Remark: Above we have in detailed demonstrated how to construct an angle congruent with a 
given angle. In the following, we shall omit the details and just write e.g. the angle A is drawn. 
 
Proof of K3: Below are the three given pieces. A side a, and the two adjacent angles. Also is 
shown the construction of the triangle. 
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Explanation: The side a is then drawn having the end points B and C. In B and C respectively are 
constructed the angle B and the angle C. A is the intersection point between the left leg of B and 
the right leg of C.  
Discussion: The constructing has always only one solution if B+C < 180o.  
 
Proof of K4:  If two triangles have two angles in common they have all three angles in common, 
so  K4 can directly be related to K3, once you know how to construct an angle w being 
180o - (u+v), when u and v are given angles. How to do this is shown below. 
 
 
 
 
 
 
 
 
 
 
 
Explanation: Let the side a together with the angles A and B be given.  We want to construct the 
angle C.  
The angle A is drawn and the right leg is prolonged to the left. The angle B is constructed from the 
left leg of A. The angle C is the found between the left leg of B and the prolongation of the right 
leg of A. Since now you know a side and two adjacent angles, a, B and C), the triangle may be 
constructed. 
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3. The five cases of constructing a triangle 
In the geometry one speaks about the five cases of a triangle, and it refers to the five different ways 
to construct a triangle (with dividers and ruler), when 3 sides, two sides and an angle or one side 
and two angles are given. (Three angles is not an option). 
The first four cases of a triangle are the four cases of congruence that we have treated above, where 
the construction has at most one solution, (apart from mirroring). 
We shall then turn to the fifth case of a triangle, where an angle, an adjacent and an opposite side 
are given e.g.  A, c and a. Illustrated in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Explanation: The angle A is drawn. From the right leg of A is drawn c, which also determines B. 
With the centre in B and radius a is drawn a circle. C lies where the circle intersects the left leg of 
A. 
 
Discussion: From the construction appears that in the case chosen there are two solutions. The 
number of solutions depends however on the size of the pieces from which the triangle is 
constructed. 
 
1. If the side a is too short, the circle then the circle will not intersect the left leg of  A and the 
construction of the triangle has no solution. The limiting case is when the left leg of  A is a 

tangent to the circle. In that case the triangle is right angled, and 22 bca  , (since c2 = a2 + b2). 
 
2. If a > c then the circle will only have one intersection with the left leg of   A.  
 

If we summarize the results: If 22 bca   there are no solutions. If 22 bca  ,  then there is 

only one solution. If : cabc  22 , then there are two solutions, and if a  c there is only one 
solution.
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4. Geometrical locus 
A geometrical locus is a somewhat antiquated designation for a set of points having a specific 
geometric property. We shall first define the concept of a circle and that of an ellipse. 
 
 
 
 
 
 
 
 
 
 
 
 
A circle is the geometrical locus for the points having the same distance from a given point C.   
The point is the centre of the circle and the distance is called the radius. 
 
An ellipse is the geometrical locus for the points where the sum of the distances from two points is 
constant equal to 2a. The two focus points are called the focus points for the ellipse and 2a is 
called the major axis of the ellipse. 
  
A circle is, as you know, drawn using dividers, while a mathematical ellipse may be drawn by 
placing the end points of a cord with the length 2a at two points. With a pencil sliding in the cord, 
holding the cord tight, you let it pass through a circumference of  360o. In this manner gardeners 
make elliptic flowerbeds.  
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4.1 Bisectors 
A bisector is a line perpendicular to a line segment through its midpoint.    
If the line segment is |AB|, then we shall show that every point on the bisector, has the same 
distance to A and B. 

Proof: According to the definition |AM| = |BM|.  
P is an arbitrary point on the bisector.  
The triangles  APM and  BPM have the side  
|PM| in common, furthermore |AM| = |BM| and  
 AMP =  BMP = 90 o.  
The two triangles therefore have two sides and 
the intermediate angle in common, and they are 
congruent, according to K2. Therefore also  
|AP |= |BP|, which completes the proof. 
 
The bisector can therefore be described as the 
geometrical locus for the points which have the 
same distance from two given points. 
This definition is used, when constructing the 
bisector on a given line segment. 
 

The construction of the bisector on a line segment AB is then performed as follows. 
With the centre in A and B respectively and with radius r > ½|AB| are drawn two circles. The 
circles will intersect each other in two points which have the same distance to A and B, and they 
therefore lie on the bisector. If you draw the line through these points you have constructed the 
bisector on AB.  
 
The same construction may be applied to establish the perpendicular in a point P. If the dividers 
are placed in the point P, and are used to mark two points A and B at the same distance on each 
side of the point P, then the bisector on AB will be the perpendicular to AB through P.   

4.2 Angular bisector 
By the angular bisector we understand a line which divides the angle in halves.  
We shall then show that the angular bisector is the geometric locus for the points that have the 
same distance to the two semi-lines that form the angle. 
 
Before we show this, we must, however, specify what we understand by the distance from a point 
to a line. A normal to a line is a (semi-) line perpendicular to it. 
For the distance from a point to a line, we therefore understand the distance measured on a normal 
to the line, through the point.  
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In the figure to the left is shown how to construct the distance from a point P to a line l. 
With centre P, is drawn a circle which intersects the line l in two points Q and R. These two points 
have the same distance from P, so P lies on the bisector for QR. If the bisector for QR is 
constructed, we have at the same time constructed a normal to l through P.   
 
In the figure to the right, we assumed that we have the angular bisector for the angle O. 
We shall start by proving that that any point on the angular bisector has the same distance to the 
two legs of the angle. In the figure we shall prove that |PQ| = |PR|. 
 
If we consider the triangles OPQ  and  OPR, then they have the side |OP| in common, they are 
both right angled, and  POQ =  POR = ½  O. Thus the triangles have a side  |OP|, an 
adjacent and an opposite angle in common, so they are congruent: |PQ| = |PR|. Thus we have 
proved: 
 
The angular bisector is the geometrical locus for the points, which have the same distance to 
two lines. 
  
Furthermore we have |OQ| = |OR| (because the triangles are congruent). The points O and P lie at 
the same distance from Q and R, and they therefore lie on the bisector for QR.  
This can be applied to construct the angular bisector for a given angle as follows: 
 
With the dividers and with centre at O is marked two points Q and R on the legs of the angle at the 
same distance from O. When constructing the bisector on QR, one has at the same time constructed 
the angular bisector for the angle O. 
About the angular bisector for one of the angles in a triangle the following theorem applies. 
 
The angular bisector divides the opposite side in the same ration as the two adjacent sides 
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Proof: In the triangle ABC we have drawn the angular bisector to the angle A, and it is prolonged 
out over the side a. Through B is drawn a line parallel with the side b. The intersection between 
that line and the angular bisector is D. We can now see that ADBADAC  ½ .  
Furthermore the angle BCACBD  , so DEBAEC  ~ . From this follows:  
 

EB

EC

DB

AC
  

 
But  ADBDAB  , so  ΔABD is an isosceles triangle |AB| = |DB| . It then follows 
 

  
EB

EC

AB

AC
 ,  

This completes the proof. 

5. Construction of the chords k10 and k5. 
The length of the chord in a regular decagon is designated k10. It spans an arc 3600/10 = 360. 
For simplicity we denote the chord by k. 

In the figure is drawn the chord as base in an isosceles 
triangle where the sides are the radii r, and the angle 
with vertex O is 360.  
The angles at the base line are therefore 720. If one of 
these angles are halved by drawing the line AC, then  
ΔABC becomes isosceles, since B = C = 720.  
So |AC| = k.  ΔACO is also isosceles, since 

036 OACO , so that |OC| = |AC| = k. 
We shall then apply the theorem about the angular 
bisector in the triangle ΔOAB.  
 

  022 


 rrkk
kr

k

k

r

CB

OC

AC

AO
 

 
Solving this quadratic equation discarding the negative solution:  
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This expression can then be used to construct k10 using dividers and ruler. 

First is drawn a semi circle having radius r. 
At the centre O is created the normal, 
intersecting the circle in B. A is the midpoint of 
OD. Having centre in A is then drawn a circle 
through B, which  
intersects the diameter in the point C.   

The radius in this circle is 5
2

22)
2

(
r

r
r

AB  . 

Thus we find: )15(
2

5
2


r

r
r

OC , 

According to the result above this is the length 
of the chord k10. 

Having constructed  k10, it is easy to construct k5, which is the side in the very familiar pentagon, 
since having constructed the decagon, you may just connect the line between two corners jumping 
one corner in the decagon. In the same manner we may construct k20 by halving k10 and then draw a 
line from the midpoint to the centre of the circle and then find the intersecting point of this line 
with the circle.  
Then we have divided the angle 360 into two halves, giving the chord k20. 
 
It is only slightly more complicated to establish an expression for k5 without using trigonometry.  
 
We draw a circle with radius r and allocate two adjacent chords k10 .The line connecting the end 
points of the two chords is k5.  

We consider two right angled triangles. 
One triangle with the hypotenuse OP and 
another with the hypotenuse PQ. 
According to Pythagoras’ theorem: (We 
have put r =1). 
 

0)(21)()1( 2
52

122
52

12  kxxkx

and: 
2

10
2

52
12 )( kkx   

                
By subtracting the upper equation from the 
lower equation we have: 
  

2
102

12
102 kxkx      

 
Inserting this in the lower equation, we get:  

 

)4()( 2
10

2
104

14
104

12
10

2
52

1 kkkkk  .  And then inserting )15(2
1

10 k  and reducing:  
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1

5 k     And using the radius r.     5210
25 
r
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Which is recognized as the same expression, as is found using trigonometry. 
  

6. The golden cut 
The golden cut is the designation for dividing a line segment into two pieces a and b, which fulfils 
the relation: 
 

       
a

ba

b

a 
  

 

The equation 
a

ba

b

a 
  can be rewritten as: 

a

b

b

a
 1 .  If we put:  x

b

a
  then the golden cut will 

fulfil the equation: 

2

51
01

1
1 2 

 xxx
x

x . 

 

The ratio between the two pieces is therefore: 618,1
2

51



 x

b

a
  

The geometrical division of a line segment in the golden cut is not entirely obvious. The 
construction below can be traced back to Euclid. 

The line segment is AB. Without restriction, 
(and because it facilitates the calculations), we 
put 
 |AB| = 2.  
In the point A is raised a normal to the side AB, 
and we mark the distance1 downwards on the 
normal. The endpoint is marked D. ΔABD is 
right angled having the catheti 1 and 2.           

Thus we have: 521|| 22 BD . 

With the centre in D and radius 5|| BD  is 
then drawn a circle. The point where the circle 
intersects the normal in A is E. We see that 

|AE| = 15  . With centre in A and radius |AE| 
is drawn a circle. The intersection with AB is 
C.  

The assertion is that C divides AB in the golden cut. 
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|AC| = |AE| = 15       and consequently      |CB| = 2 - |AC| = 53 .  
 
We then calculate the ratio: 
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Recognized as the golden cut! 
 
The golden cut comes up in numerous connections, especially in classical painting, in nature, but 
also in more imaginative and speculative areas. We shall not deal with the latter, but restrict 
ourselves to show that the diagonals in a pentagon are divided in a ratio that is the golden cut. 

The side in a pentagon is a chord which spans a 
angle of 720. According to the chord formula:   

2
sin2

v
Rk   

           The side in a pentagon is: k72 = 2R∙sin 36. 
The diagonal in a pentagon is a chord which spans 
an angle of 1440, so the length of the diagonal is  
k144 = 2R∙sin72. A diagonal is parallel to the 
opposite side in the pentagon 
The two triangles shown in the figure are therefore 
singled-angled triangles, so the ratio between k144  
and k72 are the same as the ratio between  the pieces 
a and b. 
 
 

 

b

a

k

k


72

144       
18sin2

1

18cos18sin2

18cos

36sin

)7290cos(

36sin2

72sin2



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R
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b

a
 

 
We have applied the formula: sin2v = 2∙sinv∙cosv. sin180 is, however, already known for the 

geometrical derivation of the chord k10 (the chord in a regular decagon). 
4

15
18sin


 .  

When this is inserted we find: 
 

2
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b

a
   (The golden cut) 
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Chapter 3.  Triangles and squares 

1. The right angled triangle 
A right angled triangle is a triangle, where one of the angles is 900. Traditionally the right angle is 
denoted C, so that the opposite side, the hypotenuse is c. The two other angles are A and B, and 
their opposite sides a and b are called catheti. 
 
 
 
 
 
 
 
 
 
 
 
 
The height hc is a normal from C on the side c. In the figure H is its foot point on AB. 
Since C = 90o and A + B + C = 180o we have A + B = 90o or equivalently B = 90o - A or   
A = 90o -B. In the figure both of the triangles ACH and  CBH are right angled, since H = 90o in 
both cases.  
Furthermore  ACH (the angle C in ACH) is equal to 90o - A equal to B, so   ACH =  B. 
In the same manner is seen that   BCH =  A in CBH.  The two triangles ACH and CBH are 
redrawn to the right in the figure. What we see is that these two triangles are singled-angled, since 
they both have a right angle, an angle A and an angle B. Written symbolically:  
 
(4.1)   ABC        ACH       CBH     
 
According to the axiom A5, the ratio between even lying sides is constant for these three triangles.  
Traditionally the pieces in which the height hc divides the hypotenuse are called  and . 
 
To derive some sentences for the right angled triangle we shall establish the complete set of ratios, 
which are a consequence of the three even angled triangles. To write these ratios, we need only to 
look at (4.1) and not at the figure. We do not intend to use all the equations, but it is close to 
impossible to know which ones before the equations are established. 
  

ch

ab

b

c

CH

BC

AH

AC

AC

AB
ACHABC 


 

 


a

h

b

a

c
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CBHABC

c

  

 


 c

c

h

ha

b

BH

CH

CH

AH

CB
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CBHACH   
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From the third line we find: 


 c

c

h

h
  , which gives: 

     2
ch                    This equation expresses that: 

  
In a right angled triangle, the height is the geometrical mean between the pieces in which it 
divides the hypotenuse. 

(The geometrical mean between two numbers a and b is ab . The arithmetic mean is )(2
1 ba  ) 

  
The sentence can be applied if someone wants to construct the geometrical mean between two 
pieces. However it requires also the knowledge of the concept of the perspective arc over a line 
segment. We shall return to this issue later. 

From the first line we have: 

b

b

c
      b2 = c  and from the second line: 


a

a

c
      a2 = c.  

If these two lines are added: 
 
(4.2)  a2 + b2 = c + c = c( + ) = c c = c2     a2 + b2 = c2 
 

Pythagoras theorem is probably the most well known mathematical theorem of all.  
 
In a right angled triangle the square of the hypotenuse is equal to the sum of squares of the 
catheti. 
 
Notice that Pythagoras’ theorem is founded only on the axiom A5, (and a little ingenuity). 

2. Squares 
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The figure above shows an arbitrary square together with 5 special squares having the well known 
names as shown in the figure. Their properties should be well known, as they appear from the 
figure. We shall then show some small sentences. 
 

The sum of the angles in an arbitrary square is 360o. 
 
A line which connects two opposite angles in a square is called a diagonal. In the first figure is 
drawn a diagonal between B and D.  
The diagonal divides the square in two triangles. The sum of the angles in the square is equal to the 
sum of the angles in the triangles ABD and BDC. The sum of the four angles is thus 360o. 
 
It is then easy to show that the sum of angles in an n-sided polygon is (n-2)*180o.  The n-side 
polygon can namely be separated into n-2 triangles, by drawing diagonals. The sum of angles in the 
n-sided polygon is thus the sum of the angles in the n-2 triangles. 
  

In a parallelogram the diagonals halves each other. 
 

In the figure is the intersection point of the diagonals 
is denoted M.  CAD = ACB caused by the axioms 
A3 and A4. Correspondingly DBC = BDA.  
Furthermore |BC| = |AD|  and  |AB| = |CD|  
(according to the definition of a parallelogram). Then 
it then follows that AMD is congruent with CMB, 
(according to K3).  
Then we can conclude that |AM| = |CM| and |MD| = 
|MB|.  The diagonal AC halves the diagonal BD. In the 
same manner we may show that the diagonal BD 
halves the diagonal AC.  

Thus we have shown that in a parallelogram the diagonals halve each other. 

3. Transverses 
In the triangle ABC is drawn a line segment MN, which is 
parallel to AC. Such a line is called a transverse.  
Since ABC    MBN we have: 

 

         
AC

MN

BC

BN

AB

MB
  

      
Especially if |MB| = ½|AB|. It follows that |BN| = ½ |BC| and 
|MN| = ½|AC|. The transverse is then called a mid point 
transverse, since it connects the middle of the sides AB and 

 BC. Notice that the length of the mid point transverse is ½|AC|. 
 
Conversely we have the midpoint transverse theorem:  
 
If a line connects the midpoints of the sides in a triangle it will be parallel with the third side 
and having half the length. 
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This can be derived from the fact, that there is only one line which connects the midpoints of the 
two sides in a triangle and that is the midpoint transverse. 

4. Medians 
A line which connects the vertex of an angle to the mid point of the opposite side is called a 
median. We shall then prove the theorem:  
 
The three medians in an arbitrary triangle intersect in the same point, and the intersection 
point divides any of the medians in the ratio 2:1, measured from the angle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Proof: Let L and M be the midpoints of the two sides b and c. We draw the medians BL and CM. 
Their point of intersection is G. We then draw the line from A through G. (But we do not know if it 
is a median…yet)). The line intersects BC in N. (We do not know if N is the midpoint of BC yet)  
We then prolong the line beyond the point N to the point K, such that |AG| = |GK|. 
  
We then consider the triangle ABK. Here GM is a midpoint transverse, since M is the midpoint of 
AB and G is the midpoint of AK (according to the construction). It then follows: 
 

|GM| = ½|BK|   and    GM    BK        CG  BK.   
 
In quite the same manner we consider the triangle AKC: 
 

|GL| = ½|KC|   and    GL    KC    BG  KC. 
 
So we have:  CG  BK    and   BG  KC      CGBK is a parallelogram. 
 
In a parallelogram the diagonals halves each other, so N must be the midpoint BC.  
The line from A through G must therefore be the median from A.  
 
The medians in a triangle intersect in the same point.  
 
That was the first part of the theorem. 
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Since GM is the midpoint transverse in ABK, then  |GM| = ½|BK| = ½|CG|.  (|BK| = |CG|, since 
in a parallelogram the opposite two sides are equal to each other).   
 
So G divides the midpoint median CM in the ratio 2:1. In the same manner we find that G divides 
the median BL in the ratio 2:1, and this holds true for the median AN according to the construction.  
 
The intersection point of the three medians divides any of the medians in the ratio 2:1, 
measured from the angle. 
 
And that was the second part of the theorem. 

5. The circumscribed circle of the triangle 
The bisectors in a triangle intersect in the same point, and this point is the centre of the 
circumscribed circle of the triangle. 
 

Proof: In the figure are constructed the bisectors on 
the sides AB and BC. Their intersection is O. We 
have then: |OA| = |OB| and |OB| = |OC|, from which 
follows that: |OA| = |OC|. Thus O lies on the 
bisector for AC, so the three bisectors in a triangle 
intersect in the same point. 
Since A, B and C are situated in the same distance 
from O they lie on a circle with centre O, and this is 
called the circumscribed circle of the triangle. 
 
 
 
 

5.1 The inscribed circle of a triangle 
By the inscribed circle of a triangle, we understand a circle which tangents the three sides of the 
triangle. We shall prove: 
 
The angular bisectors in a triangle intersect each other in the same point, and this point is 
the centre of the inscribed circle of the triangle. 
 

Proof: In the figure there are constructed the angular 
bisectors from A and C. Their point of intersection is 
O. O has the same distance from the two sides b and c, 
since O lies on the angular bisector from A.  
The point O has also the same distance from the two 
sides a and b, since O lies on the angular bisector from 
C.  Dist(O,b) = Dist(O,c) and Dist(O,a) = Dist(O,b), 
so Dist(O,c) = Dist(O,a), and O must also lie on the 
angular bisector from B. The angular bisectors thus 
intersect in the same point. 
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If one draws a circle with centre in O, having radius r = |aO| = |bO| = |cO|, (where |aO| is the 
distance from the side a to the point O etc.), then this circle will tangent the three sides in the 
triangle, and it is called the inscribed circle of the triangle. 
 
In connection with the inscribed circle, we shall prove a small theorem about the relation between 
the area of a triangle T , the radius r of the inscribed circle, and half the perimeter of the triangle  
s =½( a + b + c). 
     T = r∙s 
 
If the triangle is divided into three triangles AOC, COB and AOB, then the area of each of these 
triangles can be calculated as (half the height times the baseline) 2

1 rb, 2
1 ra and 2

1 rc.  

So the area of the triangle is 
 
  T = 2

1 rb + 2
1 ra + 2

1 rc = 2
1 r(b + a + c) = 2

1 r2s = r∙s 

6. Heights 

 
We shall then show that:  
 
In a triangle the three heights intersect each other in the same point. 
 
The proof is a bit more circumstantial than the proofs concerning bisectors and angular bisectors, 
and the proof requires a trick. 
Through the three angular corners of the triangle are drawn lines parallel to the opposite sides.  
These lines form a new triangle PQR. 
First we consider the polygon ABPC. In this polygon we have BP  AC and AB  PC. (“” means 
parallel) The polygon is a parallelogram so |BP| = |AC| and |PC| = |AB|. Next we consider the 
polygon ARBC.  In this polygon we have AR  BC and RB  AC.  
The polygon is a parallelogram such that |RB| = |AC| and |AR| = |BC|.  
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Holding the two polygons together |BP| = |AC| and |RB| = |AC|. Thus we find that |BP| = |RB|, 
such that B is the midpoint of PR.  The height from b, that is, hb is the bisector on the side PR in 
the triangle PQR, and correspondingly for the two other heights. Since the three heights are ha, hb 
and hc are also bisectors in the triangle PQR, they intersect each other in the same point, which 
completes the proof. 
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Chapter 4 Circles 
1. Tangent angles and periphery angles 

 
We begin with some definitions: 
 
A tangent to a circle is a line which intersects the circle in only one point. 
A secant is a line which intersects the circle in two points. 
A chord is a line segment which connects two points on the periphery of a circle. 
If the chord passes through the centre of the circle, it is called a diameter.  
A centre angle is an angle which has its vertex in the centre of the circle. It is measured by the 
angle it spans on the circle. (Definition of the degree measure)  
A tangent angle is an angle where its legs are tangents to the circle.  
A periphery angle is an angle which has its vertex on the periphery. 
 
 
 
 
 
 
 
 
 
 
 
 
 
First we shall prove that a tangent angle is measured by 180o – (the arc it spans). 
 
Proof: In the figure: OQP = ORP = 90o, so we have  O + P = 180o , which should be proved. 
 
We shall then prove: 
 
A periphery angle is measured by half the angle it spans. 
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The proof comes in three parts: First we look at the case, where the one leg of the periphery angle 
passes through the centre O of the circle. (The figure to the left)  
The angle v has vertex at P. We have drawn a helpline BC. The angles with vertices in P and B 
are both equal to v, since the triangle OPB is isosceles, and AOB is the supplement angle to 
 POB = 180o - 2v, so that AOB = 2v. So the periphery angle v having vertex in P spans the arc 
AB, which is 2v,  so in this case we may conclude that a periphery angle is measured by half the arc 
that it spans. 
 
The periphery angle in the figure in the middle has its two legs at each side of the line that 
connects P with the centre O of the circle. If this line is prolonged, we have divided the periphery 
angle into two angles each having a leg passing through the centre of the circle. Since we have 
already shown that such periphery angles are measured by half the arc that they span, we have also 
in this case, since v = u + w = ½AB + ½CB = ½AB. 
 
Finally we look at the figure to the right. Here both legs are on the same side of OP. Again we 
prolong the line PO so that it intersects the circle in C. We then have: v = u - w = ½CB - ½ CA = 
½AB, which completes the proof. 
 
We need, however, to treat two more kinds of angles in connection with a circle.  
 
A chord tangent angle is an angle, where one leg is a tangent and the other leg is a chord. 
 
A chord tangent angle is measured by half the arc it spans 
 
 
 
 
 
 
 
 
 
 
 
 
 
This follows from the statement about the periphery angles, since the chord tangent angle is a 
limiting case for a periphery angle, where the one chord degenerates into a tangent.  
But it ca also be shown directly as illustrated in the figure. If the two radii to P and Q are drawn, 
and the angles at the baseline are u, then  u = 90 –v. w = PQ = 180 – 2u  =>  u =90 - ½PQ.  
So  v = ½PQ , which is half the arc it spans.  
 
A secant angle is an angle, where the two legs are secants in a circle: (Figure to the right). 
We shall then prove that: 
 
A secant angle is measured by half of the difference between the two arcs the angle spans on 
the circle. 
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Proof: (The figure to the right) The legs of the secant angle intersect the circle in the points  A, B, 
C and D. We the draw a helpline AC, which defines the two angles u and w. u is the supplement 
angle to PCA, so u = v+w. From this follows: v = u-w = ½AB - ½CD, completing the proof.  
(We have used that u and w are periphery angles). 

2. Perspective angle arc 
In the figure below is drawn a circle with a chord AB. AB cuts off the arcs AB (and 360o - AB) in 
the circle. All the periphery angles C1, C2 and C3 cuts off the same arc AB and therefore they are 
equal. The arc AB (and 360o - AB) are called the perspective angle arcs for the chord AB, since AB 
is seen under the same angle for every point, which lie on the arc AB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 Construction of the perspective arc 
It is not entirely uncomplicated to construct the perspective arc under which a given line segment 
is seen under a given angle. The construction is shown in the figure to the right. 
The line segment is AB and the angle is v = C. 
The angle v is set in A, such that the chord AB is the left leg of C. A circle which passes through A 
and B, and which has the right leg of the angle C as a tangent in A. will have the angle v as a chord 
tangent angle, and the arc AB (below) will therefore be the double of v.  
 
The circle mentioned will therefore be the perspective arc, we are looking for.  
 
The circle can then be constructed, since the centre must lie on the bisector to AB as well as on a 
normal to the right leg of the angle in A, so by constructing the bisector on AB and the normal in A, 
the centre of the circle lies on the intersection of the two lines.  
 
If c = |AB| and  C are known in a triangle, then it requires another information to locate C and 
thereby to construct the triangle ABC. It might be hc (the height on the side c) or the median mc 
on the side c. 
  
Exercises: 
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 a) Construct ABC, when  C = 45o,  c = 6 and mc = 5. b) , and C = 45o,  c = 6 and hc = 4 
 

4. Inscribed and circumscribed squares 
We have already shown that any triangle has an inscribed and a circumscribed circle, but it is easy 
to realize that this does not necessarily apply for an arbitrary square. The square can namely be 
divided into two triangles, and these triangles must have the same circumscribed circle to ensure 
that the square has a circumscribed circle. And this is naturally not always the case.  
 
A square can be inscribed if it has a circumscribed circle, that is, a circle that passes through the 
four corners of the square. 
A square can be circumscribed, if it has an inscribed circle, that is, a circle which has the four 
sides of the square as tangents. We shall then prove the following: 
 
A square has a circumscribed circle if and only if the sum of opposite angles are 1800. 
 
A square has an inscribed circle if and only if the sum of the one pair of opposite sides is 
equal to the sum of the other pair of opposite sides. 

 
Proof:  
In the figure to the left is shown a square with a circumscribed circle. The angles A and C are 
both periphery angles, measured by half the arc that they span. Together they span the whole circle 
3600 so they must together be 1800. So  A+C = 1800, and likewise B + D = 1800. 
 
In the figure to the right is shown a square with an inscribed circle, where A, B, C and D are four 
tangent angles. (For a tangent angle the distance to the two intersection points with the circle are 
the same). The distances on the tangents from A, B, C and D to the intersections with the circle are 
denoted e, f, g and h.  Then it is seen: 
 

|AB| + |CD| = h+e+g+f,   and    |BC| + |AD| = e+f+g+h,  
It then follows: 
                  |AB| +  |CD| = |BC| + |AD|        which completes the proof. 
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5. Herons formula 
There are numerous theorems in the classical geometry, of which we have only mention the most 
notorious. 
In a textbook of geometry for the 9th grade in 1961 (performed with dividers and ruler only!) the 
book was terminated by a frightening theorem called Herons formula, which expresses the area T 
of a triangle exclusively by the sides a, b and c in a triangle. 
The half perimeter of a triangle is denoted s, so that  2s = a + b + c.  Herons formula states: 
 

               ))()(( csbsassT     

   
In the figure below is drawn a triangle, its inscribed circle together with the outer touching circle 
on the side a. The outer touching circle has the prolongation of the two sides b and c as tangents. 
 

 
The centre OA of the outer touching circle lies on the angular bisector for  
A, together with the angular bisectors for B and C. Radius in the outer touching circle is ra.  
The touching points of the inscribed circle with the sides a, b, c are denoted A1, B1 and C1.  
The distance from the points A, B, C to the touching point with the inscribed circle are denoted x, y 
og z. We have:   y+z = a,   x+z = b   and    x+y = c.   From which follows 
 
   2x+2y+2z = a+b+c = 2s       x + y + z = s 
 
When  y+z = a, is subtracted from this equation we find: x = s-a  and two analogous equations:  
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x = s-a   ,    y = s-b  and    z = s - c.  Furthermore we have, since AD = AE: 
 

AD = AB +BD = AB+BF     and     AE = AC + CE = AC + CF.  
 
By addition of the two equations: 
 
 AD + AE = 2AD = 2AE = AB + AC + BF + CF = c + b + a = 2s    
 
    AD = AE = s   
 
The distance from a angular vertex to the touching point for the outer toucing circle on the 
opposite side is equal half the perimeter for the triangle. So 
 
  BD = AD - AB = s - c.  CE = AE – AC = s - b  
 
We are now ready to establish some ratios between sides in two singled-angled-triangles. 
  
Since the angular bisectors for two supplement angles are orthogonal (together are the two half 
angles for 1800 equal to 900) 
  

OBC1 = 90o - OaBD  BOaD = OBC1 = ½B. 
 
We then have:  BOC1  OaBD, which gives: 
 

   
aa r

bs

cs

r

DO

BC

BD

OC 



 11  

 
In the same manner:  AOC1  AOaD, resulting in 
 

   
s

as

r

r

AD

AC

DO

OC

aa


 11  

 

When the two equations: 
ar

bs

cs

r 



  and  

s

as

r

r

a


  are multiplied with each other and ra is 

cancelled we find an expression for the radius r in the inscribed circle: 
 

   
s

csbsas
r

))()((2 
  

Finally applying  T = r∙s, we arrive at Herons formula 
    

   ))()(( csbsassT   
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6. About proving the inverse of a theorem 
Although it may seem obvious, then sometimes you may feel inclined to prove the inverse of a 
theorem. Here we shall illustrate the method by proving the inverse theorem to Pythagoras' 
theorem. 
If we for a triangle with the sides a, b, c have:  c2 = a2 + b2, then C = 90o. 
 
Proof: We form a right angled triangle with the catheti a and b. For this triangle applies  
c2 = a2 + b2. But since this triangle and the first triangle have 3 sides in common they are 
congruent, and therefore the first triangle is right angled.  
 
 
 
 


