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Chapter 1. Differential equations 

1. Differential equations of first order 
A differential equation of first order is an equation, where the equation besides a function y = f(x), 
then it also contains the differential quotient of this function y' = f '(x).  
If also the second derivative y'' = f ''(x) is part of the equation, then it is a second order differential 
equation. We recall the other way of writing the differential quotient: 
 

(1.1)  
dx

dy
xf )('  

 
As well as the definition of the differential dy. 
 
(1.2)  dxxfdy )(' .  
 
Formally we may say that we get the differential dy by multiplying the equation (1.1) by dx. 
 
A first order differential equation may formally be written as:  
 

(1.3)  ),( xyH
dx

dy
 ,  

 
where H is an arbitrary continuous function of y and x.  
 
To solve the differential equation means to determine any function  y = f(x), which satisfy (1.3). 
 

 f '(x) = H(f(x),x).  
 
First we shall illustrate this by an example: 
 
1.3 Example. We look at the differential equation: 
 

  x
x

yy

dx

dy





2
  

 
This differential equation cannot be solved by any standard method, but the aim is to demonstrate how you investigate 
whether a function is a solution to the equation or not. So we make a “guess” at a solution: y = x∙tan(x).  
If we differentiate this function: 

 x
x

yy
x

x

y

x

y
xxx x x x   x·y' 




22
22 tantantan)tan1(  

So x∙tan(x) is indeed a solution to the equation. It is then easy to see, that all functions  y = x∙tan(x+c) will be a solution 
as well.  
It is characteristic that a solution to a first order differential equation is determined except by a constant. 
On the other hand if you have a solution containing an arbitrary constant, then you have the complete solution. 
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1.1 Solution of first order differential equations 
We have already in the integral calculus met differential equations where y does not appear on the 
right side. 

(1.4)   )(xf
dx

dy
   

As you know, it has the solution.   
 

(1.4)    dxxfy )(   

    
Or, when writing out the meaning of the integral symbol 
 

RccxFy  ;)( ,    where    F'(x) = f(x) 
 
A first order linear differential equation is a linear expression, where y' and y only appear in the first 
power. A general expression may be written as: 
 

)()()( 121 xhyxg
dx

dy
xg      

 
If we confine ourselves to intervals, where g1(x)≠0, we can divide by g1(x) and we get:  
 

(1.5)  )()( xhyxg
dx

dy
      

 
If h(x) = 0 then the equation is said to be homogenous. 
 

0)(  yxg
dx

dy
 

 
It is possible to solve any first order equation, but before we present the formula, we shall look at 
differential equations that can be separated in their dependence on x and y. 
The general form of such an equation can be written.  
 

(1.6)   )()( xh
dx

dy
yg  , 

  
where g(y) and h(x) are now just assumed to be continuous. 
 
Let G(y) be an integral to g(y) and let H(x) be an integral to h(x), such that:  
 

G'(y) = g(y )    and     H'(x) = h(x)  
 

We shall now show the following: 
 
1) If y is determined by the equation G(y)=H(x) + c , then y is a solution to the differential equation: 
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2) If y = f(x) is a solution to the differential equation then it satisfies the equation: G(f(x))=H(x) + c.  
 
When we have verified this, then we have proven that all solutions to the differential equation are 
given by:  
 
(1.7)  G(y) = H(x) + c. 
 
We start by showing 1), as we differentiate G(y) = H(x) + c, according to the rules for 
differentiating a composite function:  
 

G'(y)y '= H'(x)         g(y)y'  = h(x)           )()( xh
dx

dy
yg   

 
Which shows that y given by G(y) = H(x) + c is a solution to the differential equation.  
 
Next we show 2), as we assume that y =f(x), is a solution. To do this, we shall show that  
G(f(x)) = H(x) + c, where c is a constant. Moving H(x) to the other side: G(f(x)) - H(x) =  c.  
We differentiate then the left side of the equation: 
 
       (G(f(x)) - H(x))’ =  G'(f(x))f '(x) - H'(x) =  g(f(x))f '(x) -  h(x) =g(y)y’ – h(x) = 0 
 
In the last expression, we have applied that  y = f(x) is a solution, such that g(y)y' = h(x). 
The differential quotient (G(f(x))-H(x))’  is identically zero, which implies that: 
 

 G(f(x)) - H(x) = c        G(f(x)) = H(x) + c  
 
which completes the proof. 
 
In practice (1.6) is solved by separation of the variables followed by integration in a series of steps: 
  

 )()( xh
dx

dy
yg            dxxhdyygdxxhdyyg )()()()(    

 
(1.7)  G(y) = H(x) +c 
 
Where G'(x) = g(x) and H'(x) = h(x). 
  
As we can see, we reach the complete solution by separation and integration.  
 
Notice the important presence of the constant c, which can be determined by the claim that the 
solution  y = f(x) should pass through the point (x0, y0), such that y0 = f(x0).  
 
Explanatory note: 
When we did not use differentials from the start, it is because the nature of differentials as infinite small quantities, 
however, not zero does not have the mathematical rigor, which is claimed in modern mathematics, although in other 
sciences especially physics, one has carefree derived formulas using differentials for more than 200 years.  
But this is a textbook on mathematics and not of mathematical applications in physics, and therefore we prefer to keep 
the mathematical rigor. 
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It is possible to show the following theorem, but we omit the proof, since it is rather technical and 
abstract  
 
(1.8) The existence and uniqueness theorem for differential equations of first order. 
 
If h(x) is defined and continuous in an interval I and g(y) is defined and continuous in an interval J, 
then there exists exactly one solution  y = f(x), which goes through the point  (x0, y0), where  

JyIx  00 . 

1.1 Examples of first order differential equations 
1.8 Example. 
We shall determine the solutions to the differential equation    
 

(1.9)  ky
dx

dy
 , 

 
where k is a non zero real constant. 
From the differential calculus we know that exponential functions have the property that the differential quotient is 
proportional to the function itself.  
We therefore “guess” the solution y = c·ekx.. Differentiating we get: 
  
  y' = cekx·k = k·cekx = ky 
 
Which shows that y = c·ekx  is a solution to the equation. 
We shall then solve the equation, using the methods developed above, and establish the complete solution actually is 
 y = c·ekx ,  where Rc - 
 
We separate the equation as we did in (1.7), and we consider two cases: 

1) We can immediately see that y = 0 is a solution to the equation. This is called the zero solution.  
2) y ≠ 0. Then we separate in the dependence in x and y, and integrate on both sides of the equation: 
  

      kdxdy
y

kdxdy
y

ky
dx

dy 11
 

 

Rccey

eeyeeyeyckxy
kx

kxckxcckx



 

,

||||ln 111
1

 

 

The last rewriting, because  Rec1  and c = 0 is the zero solution. 

This way of solving differential equations is characteristic, and in the future we shall omit the details.  
It is, however, important to remember the zero solution.  

 
1.10 Example 
The differential equation above is one of the most frequent in many sciences like physics, economy, chemistry and 
biology. 
Often the variable x represents the time, and therefore it is replaced with t. 
Differentiating once with respect to time means to find the velocity, and differentiating twice with respect to time means 
to find the accelerations. These concepts are therefore often used for the first and second derivative. 
 

The difference quotients  
t

v
aand

t

s
v








   , becomes in the limit 0t  the differential quotients. 
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t

v

tdt

ds
aand

t

s

tdt

ds
v













0
lim

0
lim  

 
 
  So when y’ means the velocity, then the differential equation and its solution is written as: 
 

(1.9)  Rcktceyky
dt

dy
 ,  

 
1.11 Example: Exponential growth.   
 
For a population (bacteria or any other spices), having unlimited access to food, one may as a first approximation 
assume that in limited periods of time t , the increment in the population y  is proportional to the size of the 

population y and the period t . Mathematically this is expressed as: 
 

  ky
t

y
tkyy 




     

 
 By letting t  go to zero, we regain the differential equation (1.9) 

 

  Rcktceyky
dt

dy
 ,  

 
If a population has a growth which leads to the differential equation (1.9), we speak about exponential growth. 
 
It appears that numerous biological organisms, including human populations in a limited period of time may be 
described by an exponential growth. 
Likewise it is obvious that the exponential growth will break down, since all exponential functions goes (fast) to infinity 
from a certain stage.  

In the section on exponential functions we saw, that one may calculate the doubling constant as: 
k

T
2ln

2
  

1.12 Example 
We shall then look at two types of differential equation, which are very similar to (1.9) and is solved in the same 
manner.  

(1.13)  bay
dx

dy
   

We introduce the auxiliary variable bayaz
a

b
yz   and we have :   

dx

dy

dx

dz
  and thus: 

 

 a
baxax ceycezaz

dx

dz
bay

dx

dy
   

 
We can see that the solution corresponds to an exponential growth, just displaced along the y-axis. 
 
1.13 Example. 
A lake which has a volume V, is added u litres of polluted water a day. The fraction of pollution is denoted q. From the 
lake is released the same amount of water u litres a day. We shall establish a differential equation for the fraction y of 
pollution of the lake, as a function of time. 
The velocity dy/dt, with which the lake is polluted has two contributions. The inlet of polluted water, 

 which is 
V

u
q , and the outlet which is 

V

u
y . The differential equation hereafter becomes: 

)( yq
V

u

dt

dy

V

u
y

V

u
q

dt

dy
    
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We can see that this differential equation is of the type (1.13), why we may immediately write the solution: 
 

  q
t

V

u

cey 


      

 
Assuming that the lake is clean at  t = 0, we find that   0 = c + q       c =  -q, where after we can write the solution.  
 

)1(
t

V

u

eqyq
t

V

u

qey





  

Since  


tfor
t

V

u

e 0 , the lake will end up with the same degree of pollution as the waste water which runs 

into the lake. 
We shall finally determine the degree of pollution , when the inlet of water corresponds to half of the lakes volume.  

This means that ut = ½V, so we find 


)1( 2

1

eqy  0.393q corresponding to  39,3% 

 
1.14 Example. Logistic growth. 
The supposition of unlimited access to food is only realistic in shorter periods. We get a more realistic model if we 
assume that the rate of growth of the population is proportional to the size of the population (as is the case of 
exponential growth), but also proportional to an upper limit M for the population. Whereas this model reflects actual 
conditions, can only be decided by experience of course. Since we explicitly discuss growth, we shall use t (time) as the 
independent variable. The differential equation then get the appearance. 
 

(1.15)  )( yMay
dt

dy
      

 
Where M – y represents the distance to the upper limit for the population. 
 
The equation is then solved by separation, and we notice that y = 0 and y = M, are trivial solutions. 
 

   
adt

yMy

dy

)(
 

 
The first integral is not so trivial to evaluate, but it is done with a technique, which is called expansion on partial 
fractions. So we shall try to write the integrand as two fractions each having one of the factors in the denominator of the 
integrand.. 
  

 
)(

)(

)(

)(

)(

1

yMy

ypqpM

yMy

qyyMp

yM

q

y

p

yMy 












 

 

If this is a identity valid for all y, it then follows that q = p and  pM = 1, so 
M

qp
1

 . If we multiply by M we get the 

differential equation: 

kaMtyMydtaMdy
yMy




  )ln(ln)
11

(  

  

Here we have assumed that y > 0 and  y < M, which were the suppositions for the model. 
By reduction and using the rules for the logarithmic function, we find: 
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 


 kaMt
yM

y
kaMtyMy ln)ln(ln kaMte

yM

y 


 

If we solve this equation with respect to y and put cke  , where c is a positive constant, we find the solution: 
 

(1.15) 
ce

cMy
ce

e
cMy

aMtaMt

aMt





 

1

1
 

 
Often you see that c is replaced by 1/c, where after the solution takes the simple form. 
 

(1.15)  
aMtce

M
y




1
 

 
The constants a and M are fixed by the model, whereas c is fixed by the size of the population at a given time. 
  
1.15 Example 
In a lake the concentration of phosphorus is a function of time. y = f (t). In a model for the concentration of phosphorus 
in the lake it is assumed that a constant amount of phosphorus is delivered to the lake a day, while the same amount that 
is let out is proportional to the concentration of phosphorus in the lake. 
We may the establish a differential equation which expresses that the relative concentration of phosphorus in the period 
of time t is a constant times t  minus a constant times the phosphorus concentration y times t . 
 

 )()( y
b

a
by

t

y
byay

t

y
tbyta

y

y












   

 
Letting t  go to zero, we get a differential equation which we recognize as the logistic equation. 
  

  )( y
b

a
by

dt

dy
  

 
For the lake in question, we have: b = 0.00001 and a/b =200. Furthermore f satisfies the equation f(475) = 107. 
We wish to determine the function f, and calculate f(1000), together with the rate of growth for the phosphorus 
concentration at t =1000. By inserting f(475) = 107 in the solution formula for the logistic equation we have:  
 

 20,2
95,0107

93
107200107

475002,01

200
107 95,0 





 

e
c

ce
ce      

 
and the solution becomes:  

te
y

002.020.21

200


         with          154
20.21

200
)1000(

2



 e

f  

 
The rate of growth  dy/dt, is determined by direct insertion in the differential equation. 
 

 0708.0)154200(15400001.0)200(00001.0  yy
dt

dy
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1.3 The complete solution to the first order linear differential equation 
We want to solve the equation: 
 

(1.16)  )()( xhyxg
dx

dy
  

 
We assume that g(x) and h(x) are continuous functions, so they can be integrated. 
If G(x) is an integral to g(x), then G’(x) =  g(x), and multiplying the equation with )( xGe , we get: 
  

 )()()()( )()()()()( xheye
dx

d
xheyxge

dx

dy
e xGxGxGxGxG   

 

Where the rewriting follows from:  yxge
dx

dy
eyxGe

dx

dy
eye

dx

d xGxGxGxGxG )()(')( )()()()()(   

The equation: 

 )()( )()( xheye
dx

d xGxG    

 
can immediately be integrated to: 
  

(1.17)   dxxheeydxxheye xGxGxGxG )()( )()()()(  

 
The equation (1.17) is the complete solution, but as you should remember, the integral always 
demands an arbitrary constant. (A constant of integration). 
 
 1.18 Example. 

Determine the solution to the differential equation : 2
x

x

y

dx

dy
 , where x > 0 , which goes through (2,-3). 

We find directly: xeexeexdx
x

xG xxGxxG   ln)(ln)(ln
1

)(  

 
When we insert in the solution formula, we find: 
  

   )4
4

1
(

11 2 cx
xx

dxxxy
x

c
xy  3

4

1
 

 

Solution through (2,-3) is found by insertion of (x,y) = (2,-3) in the solution: 10
2

23  c
c

 

 

  
x

xy
103

4

1
  

2. Second order differential equations 
A Second order differential equation, is an equation which involves the second derivative of the 
function. In general this is a huge area in mathematics and especially physics, but since this is a text 
book of  ”elementary mathematics”, we shall only be concerned with second order differential 
equations having the form shown below: 
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(2.1)  yk
dx

yd 2
2

2

     where    k ≠ 0 

 
The case where  k = 0 is immediately seen to give the solution y = c1x + c2   
 
Second order differential equations cannot be solved (except for linear differential equation having 
constant coefficients), but the task is the same, to investigate whether they have solutions, and 
subsequently to find all solutions. 
 
First we shall show, (but it follows from the linearity of the equation):  
 
If  f1 and f2 are solutions to the differential equation (2.1), so is any linear combination of f1 and f2.  
 
(2.2)  f(x) = c1 f1(x) + c2 f2(x) 
 
First we write the differential equation on the form. 
 

(2.3)  my
dx

yd


2

2

  where    m = 2k  

 
Then we differentiate (2.2) twice and get: 
  
  f ’’(x)= c1 f1 ’’(x) + c2 f2’’ (x) 
 
Since both  f1 og f2 are solutions to (2.3), we have: 
 

 f1’’ (x) = m f1(x)   and    f2’’ (x) = m f2(x),  
 
And therefore: 
 

f ’’(x)= c1 f1 ’’(x) + c2 f2’’ (x) = c1 m f1(x) + c2 m f2(x) =m(c1 f1(x) + c2 f2(x)) = m f(x) 
 
Which shows that f(x) is a solution to the differential equation (2.3). 

2.1 The Wronski-determinant 
In the following, we shall make use of the determinant-solution formula for two linear equations 
having two unknowns. The system of equations: 
 

(2.4)      
222

111

cybxa

cybxa




    has the determinant  1221
22

11 baba
ba

ba
D   

 
If D ≠ 0, then the system of equations (2,4) has exactly one solution given by:  
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(2.5) 
1221

1221

22

11

22

11

baba

bcbc

ba

ba

bc

bc

x



       and        
1221

1221

22

11

22

11

baba

caca

ba

ba

ca

ca

y



  

 
For the determination of the solutions to the differential equation: 
 

 my
dx

yd


2

2

,  

 
We introduce the so called Wronski-determinant of two differentiable functions. 
 

(2.6)   gffg
gf

gf
gfW ''

''
),(   

 
2.7 Eksempel 
The Wronski-determinant may be evaluated for any two functions. E.g. f(x) = x2 and g(x) = sin x. 
 

  xxxx
xx

xxgfW sin2cos2

cos2

sin2
),(   

 
Generally the Wronski-determinant is a function of x, but we shall show a somewhat surprising 
theorem: 
 
(2.8) If  f1 and f2 are solution to the differential equation (2.3),  
       then the Wronski-determinant is a constant. 

  W(f1, f2) = c    <=>    W’(f1, f2) = 0 

Differentiating W(f1, f2) = f1 f2’ - f1’ f2 using the product rule for differentiating of two factors: 
 

 212121212121212121 '''''''''''')'''(),(' ffffffffffffffffffW   
 
Using that f1 and f2 are solutions to the differential equation (2.3), such that: 
  
  f1’’ =m f1   and     f2’’ =m f2      
We find: 
 
 0)(''''),(' 21212121212121  ffffmfmfmffffffffW  
 
So the Wronski-determinant is constant using two arbitrary solutions to (2.3). 
  
We are now ready to prove the main theorem, about the solutions to the differential equation (2.3). 
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If  f1 and f2 are solutions to the differential equation 
 

  my
dx

yd


2

2

 

 
Where we have W(f1, f2)  ≠ 0 (a non zero constant)), then all the solutions y = f(x) can be written as 
a linear combination of the two solutions. 
  
  f(x)= c1 f1(x) + c2 f2(x) 
 
We have already shown that f(x)= c1 f1(x) + c2 f2(x) is a solution if  f1(x) and  f2(x) are solutions, so 
we only need to show that all solutions may be written in this form. 
 
If we momentarily release the claim that c1 and c2 constants, then it will always be possible to 
determine two functions c1 = c1(x) and c2 = c2(x), which satisfy the system of equations: 
 

  
)(')(')('

)()()(

2211

2211

xfxfcxfc

xfxfcxfc




 

 
The determinant for this system of equations is: 
 

''
),(

21

21
21 ff

ff
ffW  ,  

which we have presupposed to be non zero. 
 
The solutions c1=c1(x)  and  c2 = c2(x) to the system of equations, can according to the solution 
formula for two equations with two unknowns be written as: 
  

 
),(

),(

),(

''

),(

),(

),(

''

21

1

21

1

1

2
21

2

21

2

2

1 ffW

ffW

ffW

ff

ff

c
ffW

ffW

ffW

ff

ff

c   

 
Since  f1 , f2 and f  all are supposed to be solutions, then all the involved determinants are constants, 
and consequently c1 and c2 are constants, which completes the proof. 
  
We shall then solve the differential equation: 
 

  my
dx

yd


2

2

      (for m > 0 and for m < 0). 

2. 8 Example. 
m>0: We set m = k2 . then the differential equation reads: 

 yk
dx

yd 2
2

2

  

Functions where the second derivative is proportional to the function itself are either exponential functions or sine-
cosine functions, but when the constant is positive it is exponential functions.  
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By direct insertion it is verified that:
kxexf )(1  and kxexf )(2  are solutions, since 

 

  kxkx kee  )'(     and    kxkxkx ekkee   2)'(')'( . 
 

We then calculate the Wronski-determinant:  
 

 02
''

),(
21

21
21 








kkk
keke

ee

ff

ff
ffW

kxkx

kxkx

 

 
Since the Wronski-determinant is non zero, we may write the complete solution: 
  

(2.8)  kxkx ececxf  21)(  

 
2. 9 Example. 
m < 0: We put m = - k2, and then the differential equation reads: 

yk
dx

yd 2
2

2

  

Functions where the second derivative is proportional to the function itself are either exponential functions or sine-
cosine functions, but when the constant is negative, then it is sine or cosine functions.  
 
By inspection we notice that  f1(x) = cos kx  and f2(x) = sin kx are solutions, but we settle for showing one of them. 
 

  kxkkx sin)'(cos      and    kxkkxkkx cos)'sin(')'(cos 2 . 
 

Wronski-determinant for the two solutions. 
 

0)sin(cossincos
cossin

sincos

''
),( 2222

21

21
21 


 kkxkxkkxkkxk

kxkkxk

kxkx

ff

ff
ffW   

 
Since the Wronski-determinant is non zero, then we may write the complete solution: 
 

(2.8)  kxckxcxf sincos)( 21    

2.2 Uniqueness of solutions 
By a line-element , we understand a point (x0, y0) that a solution passes through, together with a 
differential quotient (the slope of the tangent in that point).  
A line-element can for example be written as (x0, y0; α). If a solution satisfies the line-element then 
we have:  f(x0) = y0  and  f ’(x0) = α. We shall then show the following: 

To each line element  (x0, y0; α) there is exactly one solution to the differential equation: my
dx

yd


2

2
, 

which goes through that line-element. 
 
We show that there is one and only one solution y = f(x), satisfying: f(x0) = y0  and  f ’(x0) = α. 
 
All solutions to the differential equation may be written:  
 
  f(x)= c1 f1(x) + c2 f2(x)  
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where  f1(x) and  f2(x) are two solutions, where the Wronski-determinant is non zero. 
The conditions for a solution is: f(x0) = y0  and  f ’(x0) = α.This can be written in two equations: 
 

  



)(')('

)()(

022011

0022011

xfcxfc

yxfcxfc
 

 
This may be considered as two linear equations having the unknowns c1 and c2.  
The determinant of the equation system is however: 
 

 
)0('2)0('1

)0(2)0(1
xfxf

xfxf
 ,  

 
Which is exactly the Wronski-determinant for the two solutions, (which we haven proven is non 
zero).  
Since the determinant for the equations is non zero, then the equations has always one and only one 
solution. 
 
 2.10 Eksempel 

Determine for the differential equation: yy
4

1
''   the solution which goes through A(0,6) and in the point A has a 

tangent with slope equal to 1. 

The equation has the form y’’ = k2y with k = 2
1 , so we may write the complete solution immediately: 

 
xx ececxf 2

1
2
1

21)(    and 
xx ececxf 2

1
2
1

22
1

12
1)('     

 
The conditions for a solution. 

   f(0) = 6   and   f ’(0) = 1   =>   10
22

10
12

1  ecec  

 2416 2122
1

12
1

21  cccccc  

 
The solution then becomes:   

xx eexf 2
1

2
1

24)(   

 
2.11 Eksempel 

Determine for the differential equation: y’’= -9y the solution where the graph passes through )32,
9

(


P  and in the 

point P has a tangent with slope equal to -6. 

The equation has the form y’’= - k2 y with k = 2
1 , so we may write the complete solution immediately: 

 

 xcxcxf 3sin23cos1)(    med   xcxcxf 3cos233sin13)(   

The solution conditions are: 

 6)
9

('32)
9

(


fandf     

 6
9

3cos23
9

3sin1332
9

3sin29
3cos1 


cccc   
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 6
3

cos23
3

sin1332
3

sin23
cos1


cccc  

 

 2
2

1
22

3
132

2

3
22

1
1 cccc  

 
 423134321 cccc  

 

The equations are most easily solved by multiplying with  - 3   adding the two equations gives: 

 
223213814  ccc  

 
The solution is hereafter: 

 

xxxf 3sin23cos32)(   

 
 
We have shown that the differential equation:   
 

yk
dx

yd 2
2

2

  

 has the complete solution:   
 

 kxckxcxf sin
2

cos
1

)(   

 
We wish to determine the value set for this function. 
This my be obtained, by determining two numbers A and φ,  such that c1 and c2 may be written on 
the form:  

c1 =Acosφ     and      c2 =Asinφ     
 

From the two equations we get by division:  tan φ =
1

2

cos

sin

c

c

A

A





 

Taking the square of the two equations and adding them: 2
2

2
1

222 )sin(cos ccA   , 
So we have: 

 2
2

2
1 ccA  . 

 
Inserting the obtained expressions for c1 and c2 in the solution, we have: 
  
 )cos()sinsincos(cos)(   kxAkxkxAxf  
 
The last rewriting is due to the first addition formula for cosine: yxyxyx sinsincoscos)cos(  .  
 
From the last expression for the solution, it is obvious that the value set for the solution is [-A, A], 
since the value set for cosine is [-1, 1]. 
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In physics the solution is often written: )cos()( 0 kxAxf . Here A is called the amplitude (in a 

harmonic oscillation), φ = kx + φ0 is called the phase and φ0 is called the initial phase. 
  


